Page d'accueil // LCSB // People // Daniele Proverbio

Daniele Proverbio

Daniele Proverbio

Doctoral researcher

Faculté ou Centre Luxembourg Centre for Systems Biomedicine
Department Systems Control
Adresse postale Université du Luxembourg
Maison du Nombre
6, Avenue de la Fonte
L-4364 Esch-sur-Alzette
Bureau sur le campus MNO, E02 0225-100
E-mail
Téléphone (+352) 46 66 44 5096

PhD student in the Systems Control group (Gonçalves Lab)

Academic Area: physics

Research topics: dynamical systems, system biology, agent-based modelling

 Background:

  • November 2018: Doctoral candidate at LCSB’s Systems Control group
  • 2018: Master’s degree in Physics of Complex Systems (University of Turin, Italy)

 Current research:

My project primarily concerns the classification of driving mechanisms for abrupt regime shifts in dynamical systems. In particular, I am investigating how fluctuations can be informative in detecting bifurcations and rate-induced regime shifts in low dimensional systems. I am also working on applications of general theory on paradigmatic models for systems biology.

Last updated on: vendredi 20 décembre 2019

powered by
orbilu.uni.lu

2022

Full Text
See detailOn regime shifts in biological research
Proverbio, Daniele

Presentation (2022)

Full Text
See detailPerformance of early warning signals for disease re-emergence: A case study on COVID-19 data
Proverbio, Daniele; Kemp, Francoise; Magni, Stefano; Goncalves, Jorge

in PLoS Computational Biology (2022), 18(3), 1009958

Full Text
See detailModel-based assessment of COVID-19 epidemic dynamics by wastewater analysis
Proverbio, Daniele; Kemp, Francoise; Magni, Stefano; Ogorzaly, Leslie; Cauchie, Henry-Michel; Goncalves, Jorge; Skupin, Alexander; Aalto, Atte

in Science of the Total Environment (2022), 827

Top of Page

2021

Full Text
See detailCOVID-19 Crisis Management in Luxembourg: Insights from an Epidemionomic Approach
Burzynski; Machado, Joel; Aalto, Atte; Beine, Michel; Haas, Tom; Kemp, Francoise; Magni, Stefano; Mombaerts, Laurent; Picard, Pierre M; Proverbio, Daniele; Skupin, Alexander; Docquier, Frédéric

in Economics and Human Biology (2021), 43

Full Text
See detailModelling COVID-19 dynamics and potential for herd immunity by vaccination in Austria, Luxembourg and Sweden
Kemp, Francoise; Proverbio, Daniele; Aalto, Atte; Mombaerts, Laurent; Fouquier d'herouël, Aymeric; Husch, Andreas; Ley, Christophe; Goncalves, Jorge; Skupin, Alexander; Magni, Stefano

in Journal of Theoretical Biology (2021)

Full Text
See detailAlmost global convergence to practical synchronization in the generalized Kuramoto model on networks over the n-sphere
Markdahl, Johan; Proverbio, Daniele; Mi, La; Goncalves, Jorge

in Communications Physics (2021), 4

Full Text
See detailDynamical SPQEIR model assesses the effectiveness of non-pharmaceutical interventions against COVID-19 epidemic outbreaks.
Proverbio, Daniele; Kemp, Francoise; Magni, Stefano; Husch, Andreas; Aalto, Atte; Mombaerts, Laurent; Skupin, Alexander; Goncalves, Jorge; Ameijeiras-Alonso, Jose; Ley, Christophe

in PloS one (2021), 16(5), 0252019

Top of Page

2020

Full Text
See detailFastField: An Open-Source Toolbox for Efficient Approximation of Deep Brain Stimulation Electric Fields
Baniasadi, Mehri; Proverbio, Daniele; Goncalves, Jorge; Hertel, Frank; Husch, Andreas

in NeuroImage (2020)

Full Text
See detailRobust synchronization of heterogeneous robot swarms on the sphere
Markdahl, Johan; Proverbio, Daniele; Goncalves, Jorge

in 2020 59th IEEE Conference on Decision and Control (CDC) (2020)

Full Text
See detailAssessing the robustness of decentralized gathering: a multi‐agent approach on micro‐biological systems
Proverbio, Daniele; Gallo, Luca; Passalacqua, Barbara; Pellegrino, Jacopo; Maggiora, Marco

in Swarm Intelligence (2020), 14

Full Text
See detailAssessing suppression strategies against epidemicoutbreaks like COVID-19: the SPQEIR model
Proverbio, Daniele; Kemp, Francoise; Magni, Stefano; Husch, Andreas; Aalto, Atte; Mombaerts, Laurent; Goncalves, Jorge; Skupin, Alexander; Ameijeiras-Alonso, Jose; Ley, Christophe

E-print/Working paper (2020)

Top of Page

2019

Top of Page