Information distribution on a bus-based opportunistic network

Supervisor
Paolo Giaccone

Candidate
Claudio Fiandrino

November 26, 2012
Title analysis

Information distribution
Title analysis

Information distribution

Comparison among routing strategies: flooding and social-aware forwarding strategies
Title analysis

Information distribution

Comparison among routing strategies: flooding and social-aware forwarding strategies

bus-based
Title analysis

- Information distribution
 - Comparison among routing strategies: flooding and social-aware forwarding strategies

- bus-based
 - The backbone of the network is realized by buses: the bus schedule helps in developing in a simple manner a mobility model
Title analysis

- Information distribution
- Comparison among routing strategies: flooding and social-aware forwarding strategies
- Bus-based
- The backbone of the network is realized by buses: the bus schedule helps in developing in a simple manner a mobility model
- Opportunistic network
Information distribution

Comparison among routing strategies: flooding and social-aware forwarding strategies

bus-based

The backbone of the network is realized by buses: the bus schedule helps in developing in a simple manner a mobility model

opportunistic network

The architecture is a kind of Delay Tolerant Networks in which each node acts as a relay
Title analysis

Comparison among routing strategies: flooding and social-aware forwarding strategies

The backbone of the network is realized by buses: the bus schedule helps in developing in a simple manner a mobility model

The architecture is a kind of Delay Tolerant Networks in which each node acts as a relay
Outline

1. The architecture
2. Mobility Model
3. Information Distribution
 - Flooding
 - Social-aware routing algorithms
The reference architecture

- Delay Tolerant Networks (DTNs) are composed of independent regions connected by gateways.

- When each node acts as a DTN gateway DTNs are also called Opportunistic Networks.
Outline

1. The architecture
2. Mobility Model
3. Information Distribution
 - Flooding
 - Social-aware routing algorithms
The mobility model

- Human mobility models are very difficult to be predicted.
- Google Transit Feed provides public bus schedule information.

Parameters of the mobility model

- Torino Google Transit Feed Data;
- *relevance* r: is the number of bus passages per stop;
- *uniformity coefficient* α: describes the relation between passenger deployment and relevance.

- Passengers move according to...
The parameters of the mobility model

- Uniformity coefficient:
 \[\alpha = \begin{cases}
 0 & \text{passengers deployed proportionally to the stop relevance;} \\
 1 & \text{passengers deployed independently of the stop relevance.}
\end{cases} \]

- Relevance:
 \[\tilde{r}_i = r_i \cdot (1 - \alpha) + (\alpha r_{\text{max}}) \quad \text{where } r_{\text{max}} = \max\{r_i\} \]

- The probability to get off the bus:
 \[p_{\text{down}} = \frac{r_i}{\sum_{j=i}^{n} r_j} \]

- The probability to get on the bus:
 \[p_{\text{up}} = 1 - p_{\text{down}} \]
The parameters of the mobility model

- **Uniformity coefficient:**
 \[\alpha = \begin{cases}
 0 & \text{passengers deployed proportionally to the stop relevance;} \\
 1 & \text{passengers deployed independently of the stop relevance.}
\end{cases} \]

- **Relevance:**
 \[\tilde{r}_i = r_i \cdot (1 - \alpha) + (\alpha r_{\text{max}}) \]
 where \(r_{\text{max}} = \max\{r_i\} \)

- **The probability to get off the bus:**
 \[p_{\text{down}} = \frac{r_i}{\sum_{j=1}^{n} r_j} \]

- **The probability to get on the bus:**
 \[p_{\text{up}} = 1 - p_{\text{down}} \]
The parameters of the mobility model

- Uniformity coefficient:
 \[\alpha = \begin{cases}
 0 & \text{passengers deployed proportionally to the stop relevance;} \\
 1 & \text{passengers deployed independently of the stop relevance.}
\end{cases} \]

- Relevance:
 \[\tilde{r}_i = r_i \cdot (1 - \alpha) + (\alpha r_{\text{max}}) \quad \text{where } r_{\text{max}} = \max\{r_i\} \]

- The probability to get off the bus:
 \[p_{\text{down}} = \frac{r_i}{\sum_{j=i}^{n} r_j} \]

- The probability to get on the bus:
 \[p_{\text{up}} = 1 - p_{\text{down}} \]
Map with the relevance of the stops
Outline

1. The architecture
2. Mobility Model
3. Information Distribution
 - Flooding
 - Social-aware routing algorithms
The target

- Proximity-based communications.
- Compare the performances of:
 - flooding;
 - social-aware algorithms.

Flooding

- simple;
- the cost in terms of network resources utilization is high.

Social-aware algorithms

- require a priori human relation knowledge;
- are less aggressive in consume network resources;
- lead anyway to good performances.
Outline

1. The architecture
2. Mobility Model
3. Information Distribution
 - Flooding
 - Social-aware routing algorithms
Flooding: evaluation conditions

- Evaluation of:
 - *stop infection process*;
 - *passengers data diffusion*;

- Content injection in:
 - peripheral stop;
 - medium-relevant stop;
 - hub stop.

- Different initial passenger deployment.

- The population consists of 100,000 passengers.

- The simulation period is 8:00-12:00 am.
Flooding: performances

- Stop infection process
Flooding: performances

- Passenger data diffusion process

<table>
<thead>
<tr>
<th>Time</th>
<th>Num. Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:00</td>
<td>0</td>
</tr>
<tr>
<td>08:12</td>
<td>0.1</td>
</tr>
<tr>
<td>08:24</td>
<td>0.2</td>
</tr>
<tr>
<td>08:36</td>
<td>0.3</td>
</tr>
<tr>
<td>08:48</td>
<td>0.4</td>
</tr>
<tr>
<td>09:00</td>
<td>0.5</td>
</tr>
<tr>
<td>09:12</td>
<td>0.6</td>
</tr>
<tr>
<td>09:24</td>
<td>0.7</td>
</tr>
<tr>
<td>09:36</td>
<td>0.8</td>
</tr>
<tr>
<td>09:48</td>
<td>0.9</td>
</tr>
<tr>
<td>10:00</td>
<td>1.0</td>
</tr>
<tr>
<td>10:12</td>
<td>1.0</td>
</tr>
<tr>
<td>10:24</td>
<td>1.0</td>
</tr>
<tr>
<td>10:36</td>
<td>1.0</td>
</tr>
<tr>
<td>10:48</td>
<td>1.0</td>
</tr>
<tr>
<td>11:00</td>
<td>1.0</td>
</tr>
<tr>
<td>11:12</td>
<td>1.0</td>
</tr>
<tr>
<td>11:24</td>
<td>1.0</td>
</tr>
<tr>
<td>11:36</td>
<td>1.0</td>
</tr>
<tr>
<td>11:48</td>
<td>1.0</td>
</tr>
<tr>
<td>12:00</td>
<td>1.0</td>
</tr>
</tbody>
</table>

- Users infected
 - Hub $\alpha = 0$
 - Medium-rel $\alpha = 0$
 - Peripheral $\alpha = 0$
 - Hub $\alpha = 1$
 - Medium-rel $\alpha = 1$
 - Peripheral $\alpha = 1$
Outline

1. The architecture
2. Mobility Model
3. Information Distribution
 - Flooding
 - Social-aware routing algorithms
Social model

- Model based on the concept of *social space*:
 - *mono-dimensional* $[0, 1]$;
 - user *mapping* based on the degree of interest in the content;
 - forwarding when the *social distance* is below the *infection radius* R;
 - an example:

![Diagram of social model](image-url)
Social-aware forwarding schemes

- Deterministic forwarding scheme (DFS): passengers are always altruistic.
 \[d(A, B) < R \]

- Probabilistic forwarding scheme (PFS): content forwarded likely to social-neighbours.
 \[P(A \text{ communicate with } B) = 1 - \frac{d(A, B)}{2R} \]
Social model: performance evaluation

Analysis have been performed:
- in a multi-hop fashion (whole population, several timeslots);
- in a single-hop fashion (limited population, one timeslot);

considering:
- a social-oblivious mobility model (SOM);
- a social-based mobility model (SBM).

Results proved that in:
- multi-hop analysis: PFS - DFS in both mobility models;
- single-hop analysis: PFS - DFS in SOM;
 DFS - PFS in SBM;

Selected scheme
Comparison between flooding and DFS
Social model: performance evaluation

- Analysis have been performed:
 - in a multi-hop fashion (whole population, several timeslots);
 - in a single-hop fashion (limited population, one timeslot);

considering:
 - a social-oblivious mobility model (SOM);
 - a social-based mobility model (SBM).

- Results proved that in:
 - multi-hop analysis: PFS \(\uparrow\) - DFS \(\downarrow\) in both mobility models;
 - single-hop analysis: PFS \(\uparrow\) - DFS \(\downarrow\) in SOM;
 \[\text{DFS} \quad \uparrow\downarrow \quad \text{PFS} \quad \downarrow\uparrow\] in SBM;
Social model: performance evaluation

- Analysis have been performed:
 - in a multi-hop fashion (whole population, several timeslots);
 - in a single-hop fashion (limited population, one timeslot);
- considering:
 - a social-oblivious mobility model (SOM);
 - a social-based mobility model (SBM).
- Results proved that in:
 - multi-hop analysis: PFS \(\uparrow\) - DFS \(\downarrow\) in both mobility models;
 - single-hop analysis: PFS \(\uparrow\) - DFS \(\downarrow\) in SOM;
 DFS \(\uparrow\) - PFS \(\downarrow\) in SBM;

Selected scheme

Comparison between flooding and DFS
Comparison flooding/deterministic forwarding scheme

![Graph showing comparison between flooding and deterministic forwarding schemes.](chart)

- Flooding
- $R = 0.05$
- $R = 0.04$
- $R = 0.03$
- $R = 0.025$
- $R = 0.02$
- $R = 0.015$
- $R = 0.01$
Thank you!
Thank you!