Algebraic Patching1

by Moshe Jarden

Abstract

The most effective challenge to the inverse problem of Galois theory has been Hilbert Irreducibility Theorem. Indeed, one may use both arithmetic and geometry in order to realize finite groups over $\mathbb{Q}(t)$. Once this has been successfully done for a finite group G, HIT yields many specializations of t to elements of \mathbb{Q} that lead to a realization of G over \mathbb{Q}. However, the realization of G over $\mathbb{Q}(t)$ usually requires the existence of rational point on a certain algebraic variety defined over \mathbb{Q}. Unfortunately, one can not always guarantee the existence of such a point, so the inverse Galois problem over \mathbb{Q} is still wide open.

The only known class of fields for which points that lead to realization of all finite groups exist is that of “ample fields”. A field K is said to be ample if every absolutely irreducible curve C defined over K with a K-rational simple point has infinitely many K-rational points. Among others, PAC fields, Henselian fields, and real closed fields are ample. Using a method called “algebraic patching” we will prove that if K is an ample field, then every finite split embedding problem over $K(t)$ is properly solvable. In particular, if K is countable and algebraically closed, this implies that $\text{Gal}(K)$ is isomorphic to the free profinite group \hat{F}_{ω} on countably many generators. Also, if K is PAC and countable, then K is Hilbertian if and only if $\text{Gal}(K) \cong \hat{F}_{\omega}$.

1For more details, including exact references, see “Algebraic Patching”, Springer 2011, by Moshe Jarden.
Contents

1 Ample Fields 89
2 Examples of Ample Fields 91
3 Finite Split Embedding Problems 92
4 Axioms for Algebraic Patching 94
5 Galois Action on Patching Data 98
6 Normed Rings 100
7 Rings of Convergent Power Series 104
8 Convergent Power Series 108
9 Several Variables 112
10 A Normed Subring of $K(x)$ 112
11 Mittag-Leffler Series 114
12 Fields of Mittag-Leffler Series 119
13 Factorization of Matrices over Complete Rings 120
14 Cyclic Extensions 123
15 Embedding Problems over Complete Fields 127
16 Embedding Problems over Ample Fields 129
17 PAC Hilbertian Fields are ω-Free 134
Introduction

The ultimate goal of Galois theory is to describe the structure of the absolute Galois group \(\text{Gal}(\mathbb{Q}) \) of \(\mathbb{Q} \). This structure will be specified as soon as we know which finite embedding problems can be solved over \(\mathbb{Q} \). If every finite Frattini embedding problem and every finite split embedding problem is solvable, then every embedding problem is solvable [9, Prop. 22.5.8]. However, not every finite Frattini problem over \(\mathbb{Q} \) can be solved. For example,

\[
(\text{Gal}(\mathbb{Q}) \to \text{Gal}(\mathbb{Q}(\sqrt{-1})/\mathbb{Q}), \mathbb{Z}/4\mathbb{Z} \to \text{Gal}(\mathbb{Q}(\sqrt{-1})/\mathbb{Q}))
\]

is an unsolvable Frattini embedding problem. So, one may ask:

Problem A. Is every finite split embedding problem over \(\mathbb{Q} \) solvable?

More generally, one would like to know:

Problem B. Let \(K \) be a Hilbertian field. Is every finite split embedding problem over \(K \) solvable?

An affirmative answer to Problem B will follow from an affirmative answer to the problem for the subfamily of Hilbertian fields consisting of all rational function fields:

Problem C (Débes–Deschamps). Let \(K \) be a field and \(x \) a variable. Is every finite split embedding problem over \(K(x) \) solvable?

1 Ample Fields

The most significant development around Problem C is its affirmative solution for ample fields \(K \). This family includes two subfamilies that seemed to have nothing in common: PAC fields and Henselian fields. Indeed, if \(K \) is a PAC field and \(v \) is a valuation of \(K \), then the Henselization \(K_v \) of \(K \) at \(v \) is the separable closure \(K_s \) of \(K \). In particular, if a PAC field is not separably closed, then it is not Henselian.

Florian Pop made a surprising yet simple and useful observation that both PAC fields and Henselian fields are existentially closed in the fields of formal power series over them. This property is one of several equivalent definitions of an ample field.

Proposition 1.1. The following conditions on a field \(K \) are equivalent:

(a) For each absolutely irreducible polynomial \(f \in K[X,Y] \), the existence of a point \((a,b) \in K^2 \) such that \(f(a,b) = 0 \) and \(\frac{\partial f}{\partial Y}(a,b) \neq 0 \) implies the existence of infinitely many such points.
(b) Every absolutely irreducible K-curve C with a simple K-rational point has infinitely many K-rational points.

(c) If an absolutely irreducible K-variety V has a simple K-rational point, then $V(K)$ is Zariski-dense in V.

(d) Every function field of one variable over K that has a K-rational place has infinitely many K-rational places.

(e) K is existentially closed in each Henselian closure $K(t)^h$ of $K(t)$ with respect to the t-adic valuation.

(f) K is existentially closed in $K((t))$.

Proof. We only prove the implication “(f) \Rightarrow (a)” and refer the reader for the other implications to [12, Lemma 5.3.1].

Inductively suppose there exist $(a_i, b_i) \in K^2$, $i = 1, \ldots, n$, such that $f(a_i, b_i) = 0$ and a_1, \ldots, a_n are distinct. We choose $a' \in K[[t]]$, t-adically close to a such that $a' \neq a_i$, $i = 1, \ldots, n$. Then $f(a', b)$ is t-adically close to 0 and $\frac{\partial f}{\partial Y}(a', b) \neq 0$. Since $K((t))$ is Henselian, there exists $b' \in K[[t]]$ such that $f(a', b') = 0$ and $\frac{\partial f}{\partial Y}(a', b') \neq 0$. Since K is existentially closed in $K((t))$, there exists $a_{n+1}, b_{n+1} \in K$ such that $f(a_{n+1}, b_{n+1}) = 0$ and $a_{n+1} \neq a_1, \ldots, a_n$. This concludes the induction.

Corollary 1.2. Every ample field is infinite.

It is possible to strengthen Condition (b) of Proposition 1.1 considerably.

Lemma 1.3 (Fehm [7, Lemma 4]). Let K be an ample field, C an absolutely irreducible curve defined over K with a simple K-rational point, and $\phi: C \to C'$ a separable dominant K-rational map to an affine curve $C' \subseteq \mathbb{A}^n$ defined over K. Then, for every proper subfield K_0 of K, $\text{card}(\phi(C(K)) \setminus \mathbb{A}^n(K_0)) = \text{card}(K)$.

The proof uses among others a trick of Jochen Koenigsmann that Pop applied to prove Proposition 1.4(b) below.

Proposition 1.4. Let K be an ample field, V an absolutely irreducible variety defined over K with a K-rational simple point, and K_0 a subfield of K. Then:

(a) $K = K_0(V(K))$.

(b) $\text{card}(V(K)) = \text{card}(K)$.

Proposition 1.5 (Pop [16, Prop. 1.2]). Every algebraic extension of an ample field is ample.

Problem 1.6. Let L/K be a finite separable extension such that L is ample. Is K ample?
2 Examples of Ample Fields

The properties causing a field K to be ample vary from diophantine, arithmetic, to Galois theoretic.

(a) PAC fields, in particular, algebraically closed fields.

(b) Henselian fields.

More generally, we say that a pair (A, a) consisting of a domain A and a nonzero ideal a of A is **Henselian** if for each $f \in A[X]$ satisfying

$$f(0) \equiv 0 \mod a \quad \text{and} \quad f'(0) \text{ is a unit mod } a$$

there exists $x \in a$ such that $f(x) = 0$.

Pop [17, Thm. 1.1] has observed that the proof that Henselian fields are ample can be adjusted to a proof that if (A, a) is a Henselian pair, then Quot(A) is ample.

(c) If A is complete with respect to a nonzero ideal a, then (A, a) is a Henselian pair, hence Quot(A) is ample.

For example, $K((X_1, \ldots, X_n))$ is ample for every $n \geq 1$ and any field K. So is, for example, the field Quot($\mathbb{Z}[[X_1, \ldots, X_n]]$). Note that if $n \geq 2$, then $F = K((X_1, \ldots, X_n))$ is Hilbertian (by Weissauer [9, Thm. 13.9.1]), hence F is not Henselian (by Geyer [9, Lemma 15.5.4]), even though the ring $K[[X_1, \ldots, X_n]]$ is complete and therefore Henselian.

(d) Real closed fields.

(e) Fields satisfying a local global principle.

Let K be a field and \mathcal{K} be a family of field extensions of K. We say that K is PKC (or also that K satisfies a **local global principle** with respect to \mathcal{K}) if every nonempty absolutely irreducible variety defined over K with a simple \bar{K}-rational point for each $\bar{K} \in \mathcal{K}$ has a K-rational point. In this case, if each $\bar{K} \in \mathcal{K}$ is ample, then K is also ample.

For example, let K be a countable Hilbertian field and S a finite set of **local primes** of K. Thus, each $p \in S$ is an equivalence class of absolute values whose completion \hat{K}_p is a local field. Let $K_p = K_s \cap \hat{K}_p$. Consider also an e-tuple $\sigma = (\sigma_1, \ldots, \sigma_e)$ taken in random in $\text{Gal}(K)^e$ (with respect to the Haar measure). Let $K_s(\sigma)$ be the fixed field in K_s of $\sigma_1, \ldots, \sigma_e$ and let $K_s[\sigma]$ be the maximal Galois extension of K in $K_s(\sigma)$. Then the field

$$K_{\text{tot},S}[\sigma] = K_s[\sigma] \cap \bigcap_{p \in S} \bigcap_{\rho \in \text{Gal}(K)} K_p^\rho$$
is \mathcal{P}_K with $K = \{ K_p^\rho \mid p \in S, \rho \in \text{Gal}(K) \}$. Since each of the fields K_p^ρ is Henselian or real closed, it is ample (by (b) and (d) above). Hence, $K_{\text{tot}, S}[\sigma]$ is ample (Geyer-Jarden [12, Example 5.6.6]).

(f) Fields with a pro-p absolute Galois group (Colliot-Thélène [2], Jarden [11]).

Problem 2.1. Let K be a field such that the order of $\text{Gal}(K)$ is divisible by only finitely many prime numbers. Is K ample?

3 Finite Split Embedding Problems

The raison d’être of ample fields is that they are the only known fields for which Problem C has an affirmative answer.

Theorem 3.1 (Pop [Main Thm. A], Haran-Jarden [3, Thm. A]). Let K be an ample field, L a finite Galois extension of K, and x a variable. Suppose $\text{Gal}(L/K)$ acts on a finite group H. Then $K(x)$ has a Galois extension F that contains L and there is a commutative diagram

$$
\begin{array}{ccc}
\text{Gal}(F/K(x)) & \longrightarrow & \text{Gal}(L/K) \\
\downarrow \gamma & & \downarrow \text{res} \\
\text{Gal}(L/K) \rtimes H & \longrightarrow & \text{Gal}(L/K)
\end{array}
$$

in which α is the projection on the first component and γ is an isomorphism.

The proof of Theorem 3.1 is carried out in two steps. First one solves the corresponding embedding problem over the field $\hat{K} = K((t))$ using patching. Then one reduces the solution obtained over $\hat{K}(x)$ to a solution over $K(x)$, using that K is existentially closed in \hat{K}.

The most striking application of Theorem 3.1 is a solution of a problem of Field Arithmetic that stayed open for a long time:

Theorem 3.2 ([12, Thm. 5.10.2]). Every PAC Hilbertian field K is ω-free (that is, every finite embedding problem over K is solvable). In particular, if K is countable, then $\text{Gal}(K)$ is isomorphic to the free profinite group \hat{F}_ω on countably many generators.

For the next application we need an improvement of Theorem 3.1.

Theorem 3.3 (Harbater-Stevenson [10, Thm. 4.3], Pop [17, Thm. 1.2], Jarden [12, Prop. 8.6.3]). Let K be an ample field and x a variable. Then every finite split embedding problem over $K(x)$ has as many solutions as the cardinality of K.

In particular, this theorem applies when \(K \) is algebraically closed. Since \(\text{Gal}(K(x)) \) is projective, we get the following generalization of a theorem that was proved in characteristic 0 using Riemann existence theorem.

Corollary 3.4 (Harbater [6, Cor. 4.2], Pop [15, Geometric (SC)], Haran-Jarden [4, Main Theorem]). Let \(K \) be an algebraically closed field of cardinality \(m \). Then \(\text{Gal}(K(x)) \cong \hat{F}_m \).

Actually, Theorem 3.3 was proved in a stronger form, in which \(K(x) \) is replaced by an arbitrary function field \(E \) of one variable over \(K \) and the solution field is regular over the field of constants of \(E \).

Harbater-Stevenson proved that every finite split embedding problem over \(K((t_1,t_2)) \) has as many solutions as the cardinality of \(K \). Moreover, this property is inherited by \(K((t_1,t_2))_{ab} \). Finally, the absolute Galois group of the latter field is projective. Together, this proves the following result:

Theorem 3.5. Let \(K \) be a separably closed field and \(E = K((t_1,t_2)) \). Then \(\text{Gal}(E_{ab}) \) is isomorphic to the free profinite group \(\hat{F}_m \) of cardinality \(m = \text{card}(E) \).

Theorem 3.3 can be improved further.

Theorem 3.6 (Bary-Soroker, Haran, Harbater [1, Thm. 7.2]; Jarden [12, Thm. 11.7.1]). Let \(E \) be a function field of one variable over an ample field \(K \). Then \(\text{Gal}(E) \) is semi-free. That is, every finite split embedding problem over \(E \)

\[
(\text{res}: \text{Gal}(E) \to \text{Gal}(F/E), \alpha: G \to \text{Gal}(F/E))
\]

has \(\text{card}(E) \)-linearly disjoint solution fields \(F_i \) (i.e. the fields \(F_i \) are linearly disjoint extensions of \(F \)).

Combining this proposition with results of Bary-Soroker-Haran-Harbater, Efrat, and Pop, we were able to prove the following result.

Theorem 3.7 (Jarden [12, Thm. 11.7.6]). Let \(K \) be a PAC field of cardinality \(c \) and \(x \) a variable. For each irreducible polynomial \(p \in K[x] \) and every positive integer \(n \) satisfying \(\text{char}(K) \nmid n \) let \(\sqrt[n]{p} \) be an \(n \)th root of \(p \) such that \((\sqrt[n]{p})^m = \sqrt[n]{p} \) for all \(m,n \). Let \(F \) be the compositum of all fields \(K(\sqrt[n]{p}) \). Then, \(F \) is Hilbertian and \(\text{Gal}(F) \cong \hat{F}_c \).

Here is a special case:

Corollary 3.8 (Jarden [12, Example 11.7.8]). Let \(K \) be an PAC field of cardinality \(m \) and \(x \) a variable. Suppose \(K \) contains all root of unity. Then \(\text{Gal}(K(x)_{ab}) \cong \hat{F}_m \).

And here is another example of a semi-free absolute Galois group:
Theorem 3.9 (Pop [12, Thm. 12.4.4]). Each of the following fields K is Hilbertian and ample. Moreover, $\text{Gal}(K)$ is semi-free of rank $\text{card}(K)$.

(a) $K = K_0((X_1, \ldots, X_n))$, where K_0 is an arbitrary field and $n \geq 2$.

(b) $K = \text{Quot}(R_0[[X_1, \ldots, X_n]])$, where R_0 is a Noetherian domain which is not a field and $n \geq 1$.

More about Theorem 3.9 can be found in Chapter 12 of [12].

Problem 3.10. Give an example of a non-ample field K such that every finite split embedding over $K(x)$ is solvable.

Note that the existence of an example as in Problem 3.10 will give a negative answer to Problem C. Conversely, a positive answer to Problem C is a negative answer to Problem 3.10.

4 Axioms for Algebraic Patching

Let E be a field, G a finite group, and $(G_i)_{i \in I}$ a finite family of subgroups of G that generates G. Suppose that for each $i \in I$ we have a finite Galois extension F_i of E with Galois group G_i. We use these extensions to construct a Galois extension F of E (not necessarily containing F_i) with Galois group G. First we ‘lift’ each F_i/E to a Galois field extension Q_i/P_i, where P_i is an appropriate field extension of E (that we refer to as “analytic”) such that $P_i \cap F_i = E$ and all of the Q_i’s are contained in a common field Q. Then we define F to be the maximal subfield contained in $\bigcap_{i \in I} Q_i$ on which the Galois actions of $\text{Gal}(Q_i/P_i)$ combine to an action of G.

\[
\begin{array}{c}
P_i \xrightarrow{G_i} Q_i \xrightarrow{} Q \\
E \xrightarrow{G_i} F_i
\end{array}
\]

The construction works if certain patching conditions on the initial data are satisfied.

Definition 4.1 (Patching data). Let I be a finite set with $|I| \geq 2$. Patching data

$$\mathcal{E} = (E, F_i, P_i, Q_i; G_i, G)_{i \in I}$$

consists of fields $E \subseteq F_i, P_i \subseteq Q$ and finite groups $G_i \leq G, i \in I$, such that the following conditions hold.

(4.1a) F_i/E is a Galois extension with Galois group $G_i, i \in I$.

(4.1b) $F_i \subseteq P_i'$, where $P_i' = \bigcap_{j \neq i} P_j, i \in I$.

Lemma 4.3. \(\bigcap_{i \in I} P_i = E \).

(4.1d) \(G = \langle G_i \mid i \in I \rangle \).

(4.1e) (Cartan’s decomposition) Let \(n = |G| \). Then for every \(B \in \text{GL}_n(Q) \) and each \(i \in I \) there exist \(B_1 \in \text{GL}_n(P_i) \) and \(B_2 \in \text{GL}_n(P'_i) \) such that \(B = B_1B_2 \).

We extend \(\mathcal{E} \) by more fields. For each \(i \in I \) let \(Q_i = P_iF_i \) be the compositum of \(P_i \) and \(F_i \) in \(Q \). Conditions (4.1b) and (4.1c) imply that \(P_i \cap F_i = E \). Hence, \(Q_i/P_i \) is a Galois extension with Galois group isomorphic (via restriction of automorphisms) to \(G_i = \text{Gal}(F_i/E) \). We identify \(\text{Gal}(Q_i/P_i) \) with \(G_i \) via this isomorphism.

Definition 4.2 (Compound). The compound of the patching data \(\mathcal{E} \) is the set \(F \) of all \(a \in \bigcap_{i \in I} Q_i \) for which there exists a function \(f : G \to \bigcap_{i \in I} Q_i \) such that

(4.2a) \(a = f(1) \)

(4.2b) \(f(\zeta \tau) = f(\zeta)^\tau \) for every \(\zeta \in G \) and \(\tau \in \bigcup_{i \in I} G_i \).

Note that \(f \) is already determined by \(f(1) \). Indeed, by (4.1d), each \(\tau \in G \) can be written as \(\tau = \tau_1\tau_2\cdots\tau_r \) with \(\tau_1, \ldots, \tau_r \in \bigcup_{i \in I} G_i \). Hence, by (4.2b), \(f(\tau) = f(1)^{\tau_1\cdots\tau_r} \).

We call \(f \) the expansion of \(a \) and denote it by \(f_a \). Thus, \(f_a(1) = a \) and \(f_a(\zeta \tau) = f_a(\zeta)^\tau \) for all \(\zeta \in G \) and \(\tau \in \bigcup_{i \in I} G_i \).

We list some elementary properties of expansions:

Lemma 4.3. Let \(F \) be the compound of \(\mathcal{E} \). Then:

(a) Every \(a \in E \) has an expansion, namely the constant function \(\zeta \mapsto a \).

(b) Let \(a, b \in F \). Then \(a + b, ab \in F \); in fact, \(f_{a+b} = f_a + f_b \) and \(f_{ab} = f_a f_b \).

(c) If \(a \in F^\times \), then \(a^{-1} \in F \). More precisely: \(f_a(\zeta) \neq 0 \) for all \(\zeta \in G \), and \(\zeta \mapsto f_a(\zeta)^{-1} \) is the expansion of \(a^{-1} \).

(d) Let \(a \in F \) and \(\sigma \in G \). Then \(f_a(\sigma) \in F \); in fact, \(f_{f_a(\sigma)}(\zeta) = f_a(\sigma \zeta) \).

Proof. Statement (a) holds, because \(a^\tau = a \) for each \(\tau \in \bigcup_{i \in I} G_i \). Next observe that the sum and the product of two expansions is again an expansion. Hence, Statement (b) follows from the uniqueness of expansions and from the observations \((f_{a+b})(1) = a + b = f_a(1) + f_b(1) = (f_a + f_b)(1) \) and \((f_{ab})(1) = (f_a f_b)(1) \).

Next we consider a nonzero \(a \in E \) and let \(\tau \in G \). Using the notation of Definition 4.2, we have \(f_a(\tau) = ((a^\tau)^\tau)^{-\tau} \neq 0 \). Since taking the inverse in \(\bigcap_{i \in I} Q_i \) commutes with the action of \(G \), the map \(\zeta \mapsto f_a(\zeta)^{-1} \) is the expansion of \(a^{-1} \). This proves (c).

Finally, one can check that the map \(\zeta \mapsto f_a(\sigma \zeta) \) has the value \(f_a(\sigma) \) at \(\zeta = 1 \) and it satisfies (4.2b). Hence, that map is an expansion of \(f_a(\sigma) \), as claimed in (d). \(\square \)
Definition 4.4 \((G\text{-action on } F)\). For \(a \in F\) and \(\sigma \in G\) put

\[
a^\sigma = f_a(\sigma),
\]

where \(f_a\) is the expansion of \(a\).

Lemma 4.5. The compound \(F\) of the patching data \(E\) is a field on which \(G\) acts by \(4.3\) such that \(F^G = E\). Moreover, for each \(i \in I\), the restriction of this action to \(G_i\) coincides with the action of \(G_i = \text{Gal}(Q_i/P_i)\) on \(F\) as a subset of \(Q_i\).

Proof. By Lemma 4.3(a),(b),(c), \(F\) is a field containing \(E\). Furthermore, \(4.3\) defines an action of \(G\) on \(F\). Indeed, \(a^1 = f_a(1) = a\). Moreover, if \(\zeta\) is another element of \(G\), then by \(4.3\) and Lemma 4.3(d), \((a^\sigma)^\zeta = f_a(\sigma)^\zeta = f_{f_a(\sigma)}(\zeta) = f_a(\sigma^\zeta) = a^{(\sigma\zeta)}\).

Claim: \(F^G = E\). Indeed, by Lemma 4.3(a), elements of \(E\) have constant expansions, hence are fixed by \(G\). Conversely, let \(a \in F^G\). Then for each \(i \in I\) we have \(a \in Q_i^{G_i} = P_i\). Hence, by \(4.1c\), \(a \in E\).

Finally, let \(\tau \in G_i\) and \(a \in F\). Then, \(f_a(\tau) = f_a(1)^\tau = a^\tau\), where \(\tau\) acts as an element of \(G_i = \text{Gal}(Q_i/P_i)\). Thus, that action coincides with the action given by \(4.3\). \(\square\)

The next goal is to prove that \(F/E\) is a Galois extension with Galois group \(G\). To achieve this goal we introduce more objects and invoke Cartan’s decomposition. Let

\[
N = \left\{ \sum_{\zeta \in G} a_\zeta \zeta \mid a_\zeta \in Q \right\}
\]

be the vector space over \(Q\) with basis \((\zeta \mid \zeta \in G)\), where \(G\) is given some fixed ordering. Thus, \(\dim Q N = |G|\). For each \(i \in I\) we consider the following subset of \(N\):

\[
N_i = \left\{ \sum_{\zeta \in G} a_\zeta \zeta \in N \mid a_\zeta \in Q_i, \ a_\zeta^\eta = a_\zeta \eta \text{ for all } \zeta \in G, \ \eta \in G_i \right\}.
\]

It is a vector space over \(P_i\).
Lemma 4.6. For each $i \in I$ the Q-vector space N has a basis which is contained in N_i.

Proof. Let $\Lambda = \{\lambda_1, \ldots, \lambda_m\}$ be a system of representatives of G/G_i and let η_1, \ldots, η_r be a listing of the elements of G_i. Thus, $G = \{\lambda_k \eta_\nu | k = 1, \ldots, m; \nu = 1, \ldots, r\}$. Let z be a primitive element for Q_i/P_i. The following sequence of $|G|$ elements of N_i

$$
\left(\sum_{\nu=1}^{r} (z^{j-1})^{\eta_\nu} \lambda_k \eta_\nu | j = 1, \ldots, r; k = 1, \ldots, m \right)
$$

(in some order) is linearly independent over Q, hence it forms a basis of N over Q.

Indeed, let $a_{jk} \in Q$ such that $\sum_{j=1}^{r} \sum_{k=1}^{m} a_{jk} \left(\sum_{\nu=1}^{r} (z^{j-1})^{\eta_\nu} \lambda_k \eta_\nu \right) = 0$. Then

$$
\sum_{k=1}^{m} \sum_{\nu=1}^{r} \sum_{j=1}^{r} a_{jk} (z^{j-1})^{\eta_\nu} \lambda_k \eta_\nu = 0.
$$

This gives $\sum_{j=1}^{r} a_{jk} (z^{j-1})^{\eta_\nu} = 0$ for all k, ν. Thus, for each $k, (a_{1k}, \ldots, a_{rk})$ is a solution of the homogeneous system of equations with the Vandermonde matrix $((z^{j-1})^{\eta_\nu})$. Since this matrix is invertible, $a_{jk} = 0$ for all j, k. \hfill \Box

Lemma 4.7 (Common basis lemma). N has a Q-basis in $\bigcap_{i \in I} N_i$.

Proof. Consider a nonempty subset J of I. Using induction on $|J|$, we find a Q-basis in $\bigcap_{j \in J} N_j$. For $J = I$ this gives the assertion of the lemma.

For each $i \in I$, Lemma 4.6 gives a Q-basis v_i of N in N_i, so the result follows when $|J| = 1$. Assume $|J| \geq 2$ and fix $i \in J$. By induction, N has a Q-basis u in $\bigcap_{j \in J \setminus \{i\}} N_j$. The transition matrix $B \in \text{GL}_n(Q)$ between v_i and u satisfies

$$
u = v_i B. \tag{4.6}
$$

By (4.1e), there exist $B_1 \in \text{GL}_n(P_i)$ and $B_2 \in \text{GL}_n(P'_i) \subseteq \bigcap_{j \in J \setminus \{i\}} \text{GL}_n(P_j)$ such that $B = B_1 B_2$. Then $u B_2^{-1} = v_i B_1$ is a Q-basis of N in $\bigcap_{j \in J} N_j$. This finishes the induction. \hfill \Box

Lemma 4.8. Let G be a finite group that acts on a field F and set $E = F^G$. If $[F : E] \geq |G|$, then F/E is a Galois extension whose Galois group is G.

Proof. Let \bar{G} be the quotient of G by the kernel of the action of G on F. Then \bar{G} is a finite group of automorphisms of F with fixed field E. By a lemma of Artin [14, Algebra, Lemma VI.1.8], F/E is a Galois extension with $\text{Gal}(F/E) = \bar{G}$. By assumption, $|\bar{G}| \geq |G| = |\text{Gal}(F/E)| = [F : E] \geq |G|$. Hence, $G = \bar{G} = \text{Gal}(F/E)$. \hfill \Box
Now we are in a position to improve Lemma 4.5.

Proposition 4.9. The compound F of the patching data \mathcal{E} is a Galois extension of E with Galois group G acting by (4.3). Moreover, $Q_i = P_i F$ for each $i \in I$.

Proof. We define a map $T : F \to N$ by

$$T(a) = \sum_{\zeta \in G} f_a(\zeta)\zeta.$$

By Lemma 4.3(a),(b), T is an E-linear map. By (4.2b), $f_a(\zeta)^{\tau} = f_a(\zeta \tau)$ for all $\zeta \in G$ and $\tau \in \bigcup_{i \in I} G_i$, so $\text{Im}(T) \subseteq \bigcap_{i \in I} N_i$. Conversely, if $\xi = \sum_{\zeta \in G} a_\zeta \zeta \in \bigcap_{i \in I} N_i$, then $a_1 \in F$ and $T(a_1) = \xi$. Therefore, $\text{Im}(T) = \bigcap_{i \in I} N_i$. By Lemma 4.7, $\text{Im}(T)$ contains $|G|$ linearly independent elements over Q, hence over E. Therefore, $[F : E] = \dim_E F \geq \dim_E \text{Im}(T) \geq |G|$. By Lemma 4.5, $F = E^G$. Hence, by Lemma 4.8, F/E is a Galois extension and $\text{Gal}(F/E) = G$.

Finally, by what we have just proved and by Lemma 4.5, the restriction

$$\text{Gal}(Q_i/P_i) \to \text{Gal}(F/E)$$

is injective. Hence, $Q_i = P_i F$. \hfill \square

5 Galois Action on Patching Data

Knowledge of the finite groups that can be realized over a field K does not determine $\text{Gal}(K)$. The latter required control on the finite embedding problems that can be solved over K. Unfortunately, our methods can handle only “finite split embedding problems”. However, in some cases (like those that appear in our main results), being able to solve all finite split embedding problem suffices.

A **finite split embedding problem** over a field E_0 is an epimorphism

(5.1) \[\text{pr} : \Gamma \ltimes G \to \Gamma \]

of finite groups, where $\Gamma = \text{Gal}(E/E_0)$ is the Galois group of a Galois extension E/E_0, G is a finite group on which Γ acts from the right, $\Gamma \ltimes G$ is the corresponding semidirect product, and pr is the projection on Γ. Each element of $\Gamma \ltimes G$ has a unique presentation as a product $\gamma \zeta$ with $\gamma \in \Gamma$ and $\zeta \in G$. The product and the inverse operation are given in $\Gamma \ltimes G$ by the formulas $\gamma \zeta \cdot \delta \eta = \gamma \delta \cdot \zeta^\delta \eta$ and $(\gamma \zeta)^{-1} = \gamma^{-1}(\zeta^{-1})^{-1}$. A **solution** of (5.1) is a Galois extension F of E_0 that contains E and an isomorphism $\psi : \text{Gal}(F/E_0) \to \Gamma \ltimes G$ such that $\text{pr} \circ \psi = \text{res}_E$. We call F a **solution field** of (5.1).

Suppose the compound F of a patching data \mathcal{E} ($\S 4$) realizes G over E. A ‘proper’ action of Γ on \mathcal{E} will then ensure that F is even a solution field for the embedding problem (5.1).
Definition 5.1. Let \(E/E_0 \) be a finite Galois extension with Galois group \(\Gamma \). Let

\[
\mathcal{E} = (E, F_i, P_i, Q_i; G_i, G)_{i \in I}
\]

be patching data (Definition 4.1). A \textbf{proper action} of \(\Gamma \) on \(\mathcal{E} \) is a triple that consists of an action of \(\Gamma \) on the group \(G \), an action of \(\Gamma \) on the field \(Q \), and an action of \(\Gamma \) on the set \(I \) such that the following conditions hold:

(5.2a) The action of \(\Gamma \) on \(Q \) extends the action of \(\Gamma \) on \(E \).

(5.2b) \(F_i^\gamma = F_i \gamma, \) \(P_i^\gamma = P_i \gamma, \) and \(G_i^\gamma = G_i \gamma, \) for all \(i \in I \) and \(\gamma \in \Gamma \).

(5.2c) \((a^\tau)^\gamma = (a^\gamma)^\tau \) for all \(i \in I, a \in F_i, \tau \in G_i, \) and \(\gamma \in \Gamma \).

The action of \(\Gamma \) on \(G \) defines a semidirect product \(\Gamma \rtimes G \) such that \(\tau \gamma = \gamma^{-1} \tau \gamma \) for all \(\tau \in G \) and \(\gamma \in \Gamma \). Let \(\text{pr}: \Gamma \rtimes G \to \Gamma \) be the canonical projection.

Proposition 5.2. In the notation of Definition 5.1 suppose that \(\Gamma = \text{Gal}(E/E_0) \) acts properly on the patching data \(\mathcal{E} \) given in Definition 5.1. Let \(F \) be the compound of \(E \). Then \(\Gamma \) acts on \(F \) via the restriction from its action on \(Q \) and the actions of \(\Gamma \) and \(G \) on \(F \) combine to an action of \(\Gamma \rtimes G \) on \(F \) with fixed field \(E_0 \). This gives an identification \(\text{Gal}(F/E_0) = \Gamma \rtimes G \) such that the following diagram of short exact sequences commutes:

\[
\begin{array}{ccccccccc}
1 & \rightarrow & G & \rightarrow & \Gamma \rtimes G & \rightarrow & \Gamma & \rightarrow & 1 \\
| & & | & & | & & | & & |
1 & \rightarrow & \text{Gal}(F/E) & \rightarrow & \text{Gal}(F/E_0) & \rightarrow & \text{Gal}(E/E_0) & \rightarrow & 1
\end{array}
\]

Thus, \(F \) is a solution field of the embedding problem (5.1).

Proof. We break the proof of the proposition into three parts.

- **Part A:** The action of \(\Gamma \) on \(F \).

 Let \(i \in I \) and \(\gamma \in \Gamma \). Then \(Q_i = P_i F_i \), so by (5.2b), \(Q_i^\gamma = Q_i \gamma \). Moreover, we have identified \(\text{Gal}(Q_i/P_i) \) with \(G_i = \text{Gal}(F_i/E) \) via restriction. Hence, by (5.2b), for all \(a \in P_i \) and \(\tau \in G_i \) we have \(\tau^\gamma \in G_i \gamma \) and \(a^\gamma \in P_i \gamma \), so \((a^\tau)^\gamma = a^\gamma = (a^\gamma)^\tau \). Together with (5.2c), this gives

\[
(5.3) \quad (a^\tau)^\gamma = (a^\gamma)^\tau \quad \text{for all } a \in Q_i \text{ and } \tau \in G_i.
\]

Consider an \(a \in F \) and let \(f_a \) be the expansion of \(a \) (Definition 4.1). Define \(f_a^\gamma: G \to \bigcap_{i \in I} Q_i \) by \(f_a^\gamma(\zeta) = f_a(\zeta^{-1})^\gamma \). Then \(f_a^\gamma \) is the expansion \(f_a \gamma \) of \(a^\gamma \). Indeed, \(f_a^\gamma(1) = f_a(1^{-1})^\gamma = a^\gamma \) and if \(\zeta \in G \) and \(\tau \in G_i \), then \(\tau^\gamma = e \in G_i \gamma = 1 \).
Hence, by (5.3) with $i^\gamma^{-1}, f_a(\zeta^\gamma^{-1}), \tau^\gamma^{-1}$ replacing i, a, τ, respectively, we have

$$f_a^\gamma(\zeta\tau) = f_a(\zeta^\gamma^{-1}\tau^\gamma^{-1})^\gamma = (f_a(\zeta^\gamma^{-1})^\tau^\gamma^{-1})^\gamma = f_a^\gamma(\zeta)^\tau.$$

Thus $a^\gamma \in F$. It follows that the action of Γ on Q restricts to an action of Γ on F.

• **Part B: The action of $\Gamma \ltimes G$ on F.** Let $a \in F$ and $\gamma \in \Gamma$. We claim that

\[(a^\sigma)^\gamma = (a^\gamma)^{\sigma^\gamma} \quad \text{for all } \sigma \in G,\]

where $a^\sigma = f_a(\sigma)$ (Definition 4.4). Indeed, write σ as a word in $\bigcup_{i \in I} G_i$. Then (5.4) follows from (5.3) by induction on the length of the word. If $\sigma = 1$, then (5.4) is an identity. Suppose (5.4) holds for some $\sigma \in G$ and let $\tau \in \bigcup_{i \in I} G_i$. Using the identification of the action of each $\tau \in G_i$ on F as an element of G_i with its action as an element of G (Lemma 4.5(a)) and (5.3) for a^σ rather than a, we have

\[(a^\sigma \tau)^\gamma = ((a^\sigma)^\gamma)^{\tau^\gamma} = ((a^\gamma)^{\sigma^\gamma})^{\tau^\gamma} = (a^\gamma)^{\sigma^\gamma \tau^\gamma} = (a^\gamma)^{(\sigma \tau)^\gamma}.\]

Now we apply (5.4) to $a^{\gamma^{-1}}$ instead of a, to find that $((a^{\gamma^{-1}})^\sigma)^\gamma = a^{\sigma^\gamma}$. It follows that the actions of Γ and G on F combine to an action of $\Gamma \ltimes G$ on F.

\[(5.5) \quad P_i \longrightarrow Q_i \longrightarrow Q \quad | \quad F \quad | \quad E \longrightarrow F_i \longrightarrow P'_i \]

• **Part C: Conclusion of the proof.** Since $F^G = E$ (Lemma 4.5) and $E^\Gamma = E_0$, we have $F^{\Gamma \ltimes G} = E_0$. Furthermore, $[F : E_0] = [F : E] \cdot [E : E_0] = |G| \cdot |\Gamma| = |\Gamma \ltimes G|$. By Galois theory, $\text{Gal}(F/E_0) = \Gamma \ltimes G$ and the map $\text{res}: \text{Gal}(F/E_0) \to \text{Gal}(E/E_0)$ coincides with the canonical map $\text{pr}: \Gamma \ltimes G \to \Gamma$.

\[\square\]

6 Normed Rings

In Section 15 we construct patching data over fields $K(x)$, where K is a complete ultrametric valued field. The ‘analytic’ fields P_i will be the quotient fields of
certain rings of convergent power series in several variables over K. At a certain point in a proof by induction we consider a ring of convergent power series in one variable over a complete ultrametric valued ring. So, we start by recalling the definition and properties of the latter rings.

Let A be a commutative ring with 1. An ultrametric absolute value of A is a function $| | : A \rightarrow \mathbb{R}$ satisfying the following conditions:

(6.1a) $|a| \geq 0$, and $|a| = 0$ if and only if $a = 0$.

(6.1b) There exists $a \in A$ such that $0 < |a| < 1$.

(6.1c) $|ab| = |a| \cdot |b|$.

(6.1d) $|a + b| \leq \max(|a|, |b|)$.

By (6.1a) and (6.1c), A is an integral domain. By (6.1c), the absolute value of A extends to an absolute value on the quotient field of A (by $|\frac{a}{b}| = \frac{|a|}{|b|}$). It follows also that $|1| = 1$, $|-a| = |a|$, and

(6.1d′) if $|a| < |b|$, then $|a + b| = |b|$.

Denote the ordered additive group of the real numbers by \mathbb{R}^+. The function $v: \text{Quot}(A) \rightarrow \mathbb{R}^+ \cup \{\infty\}$ defined by $v(a) = -\log |a|$ satisfies the following conditions:

(6.2a) $v(a) = \infty$ if and only if $a = 0$.

(6.2b) There exists $a \in \text{Quot}(A)$ such that $0 < v(a) < \infty$.

(6.2c) $v(ab) = v(a) + v(b)$.

(6.2d) $v(a + b) \geq \min\{v(a), v(b)\}$ (and $v(a + b) = v(b)$ if $v(b) < v(a)$).

In other words, v is a real valuation of $\text{Quot}(A)$. Conversely, every real valuation $v: \text{Quot}(A) \rightarrow \mathbb{R}^+ \cup \{\infty\}$ gives rise to a nontrivial ultrametric absolute value $| |$ of $\text{Quot}(A)$: $|a| = \epsilon^{v(a)}$, where ϵ is a fixed real number between 0 and 1.

An attempt to extend an absolute value from A to a larger ring A' may result in relaxing Condition (6.1c), replacing the equality by an inequality. This leads to the more general notion of a ‘norm’.

Definition 6.1 (Normed rings). Let R be an associative (and not necessarily commutative) ring with 1. An (ultrametric) norm on R is a function $\|\| : R \rightarrow \mathbb{R}$ that satisfies the following conditions for all $a, b \in R$:

(6.3a) $\|a\| \geq 0$, and $\|a\| = 0$ if and only if $a = 0$; further $\|1\| = \| -1\| = 1$.

(6.3b) There is an $x \in R$ with $0 < \|x\| < 1$.

(6.3c) \(\|ab\| \leq \|a\| \cdot \|b\| \).

(6.3d) \(\|a + b\| \leq \max(\|a\|, \|b\|) \).

The norm \(\| \cdot \| \) naturally defines a topology on \(R \) whose basis is the collection of all sets \(U(a_0, r) = \{ a \in R \mid \|a - a_0\| < r \} \) with \(a_0 \in R \) and \(r > 0 \). Both addition and multiplication are continuous under that topology. Thus, \(R \) is a topological ring.

In the sequel, whenever we speak about a “normed ring”, we mean an “associative normed ring with 1”.

Definition 6.2 (Complete rings). Let \(R \) be a normed ring. A sequence \(a_1, a_2, \ldots \) of elements of \(R \) is **Cauchy** if for each \(\varepsilon > 0 \) there exists \(m_0 \) such that \(\|a_n - a_m\| < \varepsilon \) for all \(m, n \geq m_0 \). We say that \(R \) is **complete** if every Cauchy sequence converges.

Lemma 6.3. Let \(R \) be a normed ring and let \(a, b \in R \). Then:

(a) \(\| - a\| = \|a\| \).

(b) If \(\|a\| < \|b\| \), then \(\|a + b\| = \|b\| \).

(c) A sequence \(a_1, a_2, a_3, \ldots \) of elements of \(R \) is Cauchy if for each \(\varepsilon > 0 \) there exists \(m_0 \) such that \(\|a_{m+1} - a_m\| < \varepsilon \) for all \(m \geq m_0 \).

(d) The map \(x \mapsto \|x\| \) from \(R \) to \(\mathbb{R} \) is continuous.

(e) If \(R \) is complete, then a series \(\sum_{n=0}^{\infty} a_n \) of elements of \(R \) converges if and only if \(a_n \to 0 \).

(f) If \(R \) is complete and \(\|a\| < 1 \), then \(1 - a \in R^\times \). Moreover, \((1 - a)^{-1} = 1 + b \) with \(\|b\| < 1 \).

Proof.

• **Proof of (a):** Observe that \(\| - a\| \leq \|-1\| \cdot \|a\| = \|a\| \). Replacing \(a \) by \(-a\), we get \(\|a\| \leq \|- a\| \), hence the claimed equality.

• **Proof of (b):** Assume \(\|a + b\| < \|b\| \). Then, by (a), \(\|b\| = \|(-a) + (a + b)\| \leq \max(\|- a\|, \|a + b\|) \) \(< \|b\| \), which is a contradiction.

• **Proof of (c):** With \(m_0 \) as above let \(n > m \geq m_0 \). Then

\[
\|a_n - a_m\| \leq \max(\|a_n - a_{n-1}\|, \ldots, \|a_{m+1} - a_m\|) < \varepsilon.
\]
Example 6.4. (a) Every field \(K\) with an ultrametric absolute value is a normed ring. For example, for each prime number \(p\), \(\mathbb{Q}\) has a \(p\)-adic absolute value \(| \cdot |_p\) which is defined by \(|x|_p = p^{-m}\) if \(x = \frac{a}{b}p^m\) with \(a, b, m \in \mathbb{Z}\) and \(p \nmid a, b\).

(b) The ring \(\mathbb{Z}_p\) of \(p\)-adic integers and the field \(\mathbb{Q}_p\) of \(p\)-adic numbers are complete with respect to the \(p\)-adic absolute value.

(c) Let \(K_0\) be a field and let \(0 < \varepsilon < 1\). The ring \(K_0[[t]]\) (resp. field \(K_0((t))\)) of formal power series \(\sum_{i=0}^{\infty} a_it^i\) (resp. \(\sum_{i=m}^{\infty} a_it^i\) with \(m \in \mathbb{Z}\)) with coefficients in \(K_0\) is complete with respect to the absolute value \(|\sum_{i=m}^{\infty} a_it^i| = \varepsilon^{\min(|i|, a_i \neq 0)}\).

(d) Let \(\| \cdot \|\) be a norm of a commutative ring \(A\). For each positive integer \(n\) we extend the norm to the associative (but usually not commutative) ring \(M_n(A)\) of all \(n \times n\) matrices with entries in \(A\) by

\[
\|(a_{ij})_{1 \leq i,j \leq n}\| = \max(\|a_{ij}\|_{1 \leq i,j \leq n}).
\]

If \(b = (b_{jk})_{1 \leq j,k \leq n}\) is another matrix and \(c = ab\), then \(c_{ik} = \sum_{j=1}^{n} a_{ij}b_{jk}\) and \(\|c_{ik}\| \leq \max(\|a_{ij}\| \cdot \|b_{jk}\|) \leq \|a\| \cdot \|b\|\). Hence, \(\|c\| \leq \|a\|\|b\|\). This verifies Condition (6.3c). The verification of (6.3a), (6.3b), and (6.3d) is straightforward. Note that when \(n \geq 2\), even if the initial norm of \(A\) is an absolute value, the extended norm satisfies only the weak condition (6.3c) and not the stronger condition (6.1c), so it is not an absolute value.

If \(A\) is complete, then so is \(M_n(A)\). Indeed, let \(a_i = (a_{i,rs})_{1 \leq r,s \leq n}\) be a Cauchy sequence in \(M_n(A)\). Since \(\|a_{i,rs} - a_{j,rs}\| \leq \|a_i - a_j\|\), each of the sequences \(a_{1,rs}, a_{2,rs}, a_{3,rs}, \ldots\) is Cauchy, hence converges to an element \(b_{rs}\) of \(A\). Set \(b = (b_{rs})_{1 \leq r,s \leq n}\). Then \(a_i \to b\). Consequently, \(M_n(A)\) is complete.

Like absolute valued rings, every normed ring has a completion:
Lemma 6.5. Every normed ring \((R, \| \|)\) can be embedded into a complete normed ring \((\hat{R}, \| \|)\) such that \(R\) is dense in \(\hat{R}\) and the following universal condition holds:

(I) Each continuous homomorphism \(f\) of \(R\) into a complete ring \(S\) uniquely extends to a continuous homomorphism \(\hat{f}: \hat{R} \to S\).

The normed ring \((\hat{R}, \| \|)\) is called the completion of \((R, \| \|)\).

Proof. We consider the set \(A\) of all Cauchy sequences \(a = (a_n)_{n=1}^{\infty}\) with \(a_n \in R\). For each \(a \in A\), the values \(\|a_n\|\) of its components are bounded. Hence, \(A\) is closed under componentwise addition and multiplication and contains all constant sequences. Thus, \(A\) is a ring. Let \(n\) be the ideal of all sequences that converge to 0. We set \(\hat{R} = A/n\) and identify each \(x \in R\) with the coset \((x)_{n=1}^{\infty} + n\).

If \(a \in A \setminus n\), then \(\|a_n\|\) eventually becomes constant. Indeed, there exists \(\beta > 0\) such that \(\|a_n\| \geq \beta\) for all sufficiently large \(n\). Choose \(n_0\) large such that \(\|a_n - a_m\| < \beta\) for all \(n, m \geq n_0\). Then, \(\|a_n - a_{n_0}\| < \beta \leq \|a_{n_0}\|\), so \(\|a_n\| = \|(a_n - a_{n_0}) + a_{n_0}\| = \|a_{n_0}\|\). We define \(\|a\|\) to be the eventual absolute value of \(a_n\) and note that \(\|a\| \neq 0\). If \(b \in n\), we set \(\|b\| = 0\) and observe that \(\|a + b\| = \|a\|\). It follows that \(\|a + n\| = \|a\|\) is a well defined function on \(\hat{R}\) which extends the norm of \(R\).

One checks that \(\| \|\) is a norm on \(\hat{R}\) and that \(R\) is dense in \(\hat{R}\). Indeed, if \(a = (a_n)_{n=1}^{\infty} \in A\), then \(a_n + n \to a + n\). To prove that \(\hat{R}\) is complete under \(\| \|\) we consider a Cauchy sequence \((a_k)_{k=1}^{\infty}\) of elements of \(\hat{R}\). For each \(k\) we choose an element \(b_k \in R\) such that \(\|b_k - a_k\| < \frac{1}{k}\). Then \((b_k)_{k=1}^{\infty}\) is a Cauchy sequence of \(R\) and the sequence \((a_k)_{k=1}^{\infty}\) converges to the element \((b_k)_{k=1}^{\infty} + n\) of \(\hat{R}\).

Finally, let \(S\) be a complete normed ring and \(f: \hat{R} \to S\) a continuous homomorphism. Then, for each \(a = (a_n)_{n=1}^{\infty} \in A\), the sequence \((f(a_n))_{n=1}^{\infty}\) of \(S\) is Cauchy, hence it converges to an element \(s\). Define \(\hat{f}(a + n) = s\) and check that \(\hat{f}\) has the desired properties. \(\square\)

7 Rings of Convergent Power Series

Let \(A\) be a complete normed commutative ring and \(x\) a variable. Consider the following subset of \(A[[x]]\):

\[A\{x\} = \left\{ \sum_{n=0}^{\infty} a_n x^n \mid a_n \in A, \lim_{n \to \infty} \|a_n\| = 0 \right\}. \]

For each \(f = \sum_{n=0}^{\infty} a_n x^n \in A\{x\}\) we define \(\|f\| = \max(\|a_n\|)_{n=0,1,2,\ldots}.\) This definition makes sense because \(a_n \to 0\), hence \(\|a_n\|\) is bounded.

We prove the Weierstrass division theorem and the Weierstrass preparation theorem for \(A\{x\}\) in analogy to the corresponding theorems for the ring of formal power series in one variable over a local ring.
Lemma 7.1. (a) $A\{x\}$ is a subring of $A[[x]]$ containing A.

(b) The function $\|\| : A\{x\} \to \mathbb{R}$ is a norm.

(c) The ring $A\{x\}$ is complete under that norm.

(d) Let B be a complete normed ring extension of A. Then each $b \in B$ with $\|b\| \leq 1$ defines an evaluation homomorphism $A\{x\} \to B$ given by

$$f = \sum_{n=0}^{\infty} a_n x^n \mapsto f(b) = \sum_{n=0}^{\infty} a_n b^n.$$

Proof.

- **Proof of (a):** We prove only that $A\{x\}$ is closed under multiplication. To that end let $f = \sum_{i=0}^{\infty} a_i x^i$ and $g = \sum_{j=0}^{\infty} b_j x^j$ be elements of $A\{x\}$. Consider $\varepsilon > 0$ and let n_0 be a positive number such that $\|a_i\| < \varepsilon$ if $i \geq \frac{n_0}{2}$ and $\|b_j\| < \varepsilon$ if $j \geq \frac{n_0}{2}$. Now let $n \geq n_0$ and $i + j = n$. Then $i \geq \frac{n_0}{2}$ or $j \geq \frac{n_0}{2}$. It follows that $\left\| \sum_{i+j=n} a_i b_j \right\| \leq \max(\|a_i\| \cdot \|b_j\|)_{i+j=n} \leq \varepsilon \cdot \max(\|f\|, \|g\|)$. Thus, $f g = \sum_{n=0}^{\infty} \sum_{i+j=n} a_i b_j x^n$ belongs to $A\{x\}$, as claimed.

- **Proof of (b):** Standard checking.

- **Proof of (c):** Let $f_i = \sum_{n=0}^{\infty} a_{in} x^n$, $i = 1, 2, 3, \ldots$, be a Cauchy sequence in $A\{x\}$. For each $\varepsilon > 0$ there exists i_0 such that $\|a_{in} - a_{jn}\| \leq \|f_i - f_j\| < \varepsilon$ for all $i, j \geq i_0$ and for all n. Thus, for each n, the sequence $a_{1n}, a_{2n}, a_{3n}, \ldots$ is Cauchy, hence converges to an element $a_n \in A$. If we let j tend to infinity in the latter inequality, we get that $\|a_{in} - a_n\| < \varepsilon$ for all $i \geq i_0$ and all n. Set $f = \sum_{i=0}^{\infty} a_n x^n$. Then $a_n \to 0$ and $\|f_i - f\| = \max(\|a_{in} - a_n\|)_{n=0,1,2,\ldots} < \varepsilon$ if $i \geq i_0$. Consequently, the f_i's converge in $A\{x\}$.

- **Proof of (d):** Note that $\|a_n b^n\| \leq \|a_n\| \to 0$, so $\sum_{n=0}^{\infty} a_n b^n$ is an element of B.

\[\square\]

Definition 7.2. Let $f = \sum_{n=0}^{\infty} a_n x^n$ be a nonzero element of $A\{x\}$. We define the pseudo degree of f to be the integer $d = \max\{n \geq 0 \mid \|a_n\| = \|f\|\}$ and set $\text{pseudo.deg}(f) = d$.

The element a_d is the pseudo leading coefficient of f. Thus, $\|a_d\| = \|f\|$ and $\|a_n\| < \|f\|$ for each $n > d$. If $f \in A[x]$ is a polynomial, then $\text{pseudo.deg}(f) \leq \deg(f)$. If a_d is invertible in A and satisfies $\|ca_d\| = \|c\| \cdot \|a_d\|$ for all $c \in A$, we call f regular. In particular, if A is a field and $\|\|$ is an ultrametric absolute value, then each $0 \neq f \in A\{x\}$ is regular. The following lemma implies that in this case $\|\|$ is an absolute value of $A\{x\}$.
Lemma 7.3 (Gauss’ Lemma). Let \(f, g \in A\{x\} \). Suppose \(f \) is regular of pseudo degree \(d \) and \(f, g \neq 0 \). Then \(\|fg\| = \|f\| \cdot \|g\| \) and pseudo.deg(\(fg \)) = pseudo.deg(\(f \)) + pseudo.deg(\(g \)).

Proof. Let \(f = \sum_{i=0}^{\infty} a_i x^i \) and \(g = \sum_{j=0}^{\infty} b_j x^j \). Let \(a_d \) (resp. \(b_e \)) be the pseudo leading coefficient of \(f \) (resp. \(g \)). Then \(fg = \sum_{n=0}^{\infty} c_n x^n \) with \(c_n = \sum_{i+j=n} a_i b_j \).

If \(i + j = d + e \) and \((i, j) \neq (d, e) \), then either \(i > d \) or \(j > e \). In each case, \(\|a_i b_j\| \leq \|a_i\| \cdot \|b_j\| < \|f\| \cdot \|g\| \). By our assumption on \(a_d \), we have \(\|a_d b_e\| = \|a_d\| \cdot \|b_e\| = \|f\| \cdot \|g\| \). By Lemma 6.3(b), this implies \(\|c_{d+e}\| = \|f\| \cdot \|g\| \).

If \(i + j > d + e \), then either \(i > d \) and \(\|a_i\| < \|f\| \) or \(j > e \) and \(\|b_j\| < \|g\| \). In each case \(\|a_i b_j\| \leq \|a_i\| \cdot \|b_j\| < \|f\| \cdot \|g\| \). Hence, \(\|c_n\| < \|c_{d+e}\| \) for each \(n > d + e \). Therefore, \(c_{d+e} \) is the pseudo leading coefficient of \(fg \), and the lemma is proved. \(\square \)

Proposition 7.4 (Weierstrass division theorem). Let \(f \in A\{x\} \) and let \(g \in A\{x\} \) be regular of pseudo degree \(d \). Then there are unique \(q \in A\{x\} \) and \(r \in A[x] \) such that \(f = qg + r \) and \(deg(r) < d \). Moreover,

\[
(7.1) \quad \|qg\| = \|q\| \cdot \|g\| \leq \|f\| \quad \text{and} \quad \|r\| \leq \|f\|.
\]

Proof. We break the proof into several parts.

- **Part A: Proof of (7.1).** First we assume that there exist \(q \in A\{x\} \) and \(r \in A[x] \) such that \(f = qg + r \) with \(\deg(r) < d \). If \(q = 0 \), then (7.1) is clear. Otherwise, \(q \neq 0 \) and we let \(e = \text{pseudo.deg}(q) \). By Lemma 7.3, \(\|qg\| = \|q\| \cdot \|g\| \) and \(\text{pseudo.deg}(qg) = e + d > \deg(r) \). Hence, the coefficient \(c_{d+e} \) of \(x^{d+e} \) in \(qg \) is also the coefficient of \(x^{d+e} \) in \(f \). It follows that \(\|qg\| = \|c_{d+e}\| \leq \|f\| \). Consequently, \(\|r\| = \|f - qg\| \leq \|f\| \).

- **Part B Uniqueness.** Suppose \(f = qg + r = q'g + r' \), where \(q, q' \in A\{x\} \) and \(r, r' \in A[x] \) are of degrees less than \(d \). Then \(0 = (q - q')g + (r - r') \). By Part A, applied to 0 rather than to \(f \), \(\|q - q'\| \cdot \|g\| = \|r - r'\| = 0 \). Hence, \(q = q' \) and \(r = r' \).

- **Part C: Existence if \(g \) is a polynomial of degree \(d \).** Write \(f = \sum_{n=0}^{\infty} b_n x^n \) with \(b_n \in A \) converging to 0. For each \(m \geq 0 \) let \(f_m = \sum_{n=0}^{m} b_n x^n \in A[x] \). Then the \(f_1, f_2, f_3, \ldots \) converge to \(f \), in particular they form a Cauchy sequence. Since \(g \) is regular of pseudo degree \(d \), its leading coefficient is invertible. Euclid’s algorithm for polynomials over \(A \) produces \(q_m, r_m \in A[x] \) with \(f_m = q_m g + r_m \) and \(\deg(r_m) < \deg(g) \). Thus, for all \(k, m \) we have \(f_m - f_k = (q_m - q_k)g + (r_m - r_k) \). By Part A, \(\|q_m - q_k\| \cdot \|g\|, \|r_m - r_k\| \leq \|f_m - f_k\| \). Thus, \(\{q_m\}_{m=0}^{\infty} \) and \(\{r_m\}_{m=0}^{\infty} \) are Cauchy sequences in \(A\{x\} \). Since \(A\{x\} \) is complete (Lemma 7.1), the \(q_m \)'s converge to some \(q \in A\{x\} \). Since \(A \) is complete, the \(r_m \)'s converge to an \(r \in A[x] \) of degree less than \(d \). It follows that \(f = qg + r \).
Part D: Existence for arbitrary \(g \). Let \(g = \sum_{n=0}^{\infty} a_n x^n \) and set \(g_0 = \sum_{n=0}^{d} a_n x^n \in A[x] \). Then \(\| g - g_0 \| < \| g \| \). By Part C, there are \(q_0 \in A[x] \) and \(r_0 \in A[x] \) such that \(f = q_0 g_0 + r_0 \) and \(\deg(r_0) < d \). By Part A, \(\| q_0 \| \leq \frac{\| f \|}{\| g \|} \) and \(\| r_0 \| \leq \| f \| \). Thus, \(f = q_0 g + r_0 + f_1 \), where \(f_1 = -q_0(g - g_0) \), and \(\| f_1 \| \leq \frac{\| g - g_0 \| \cdot \| f \|}{\| g \|} \).

Set \(f_0 = f \). By induction we get, for each \(k \geq 0 \), elements \(f_k, q_k \in A[x] \) and \(r_k \in A[x] \) such that \(\deg(r_k) < d \) and

\[
f_k = q_k g + r_k + f_{k+1}, \quad \| q_k \| \leq \frac{\| f_k \|}{\| g \|}, \quad \| r_k \| \leq \| f_k \|, \quad \text{and} \quad \| f_{k+1} \| \leq \frac{\| g - g_0 \|}{\| g \|} \cdot \| f_k \|.
\]

It follows that \(\| f_k \| \leq \left(\frac{\| g - g_0 \|}{\| g \|} \right)^k \| f \| \), so \(\| f_k \| \to 0 \). Hence, also \(\| q_k \|, \| r_k \| \to 0 \). Therefore, \(g = \sum_{k=0}^{\infty} q_k \in A[x] \) and \(r = \sum_{k=0}^{\infty} r_k \in A[x] \). By construction, \(f = \sum_{n=0}^{\infty} q_n g + \sum_{n=0}^{\infty} r_n + f_{k+1} \) for each \(k \). Taking \(k \) to infinity, we get \(f = qg + r \) and \(\deg(r) < d \).

\[\square\]

Corollary 7.5 (Weierstrass preparation theorem). Let \(f \in A[x] \) be regular of pseudo degree \(d \). Then \(f = qg \), where \(q \) is a unit of \(A[x] \) and \(g \in A[x] \) is a monic polynomial of degree \(d \) with \(\| g \| = 1 \). Moreover, \(q \) and \(g \) are uniquely determined by these conditions.

Proof. By Proposition 7.4 there are \(q' \in A[x] \) and \(r' \in A[x] \) of degree \(< d \) such that \(x^d = q'f + r' \) and \(\| r' \| \leq \| x^d \| = 1 \). Set \(g = x^d - r' \). Then \(g \) is monic of degree \(d \), \(g = q'f \), and \(\| g \| = 1 \). It remains to show that \(q' \in A\{x\}^\times \).

Note that \(g \) is regular of pseudo degree \(d \). By Proposition 7.4, there are \(q \in A\{x\} \) and \(r \in A[x] \) such that \(f = qg + r \) and \(\deg(r) < d \). Thus, \(f = qq'f + r \). Since \(f = 1 \cdot f + 0 \), the uniqueness part of Proposition 7.4 implies that \(qq' = 1 \). Hence, \(q' \in A\{x\}^\times \).

Finally suppose \(f = q_1 g_1 \), where \(q_1 \in A\{x\}^\times \) and \(g_1 \in A[x] \) is monic of degree \(d \) with \(\| g_1 \| = 1 \). Then \(g_1 = (q_1^{-1} q)g + 0 \) and \(g_1 = 1 \cdot g + (g_1 - g) \), where \(g_1 - g \) is a polynomial of degree at most \(d - 1 \). By the uniqueness part of Proposition 7.4, \(q_1^{-1} q_2 = 1 \), so \(q_1 = q_2 \) and \(g_1 = g \). \[\square\]

Corollary 7.6. Let \(f = \sum_{n=0}^{\infty} a_n x^n \) be a regular element of \(A\{x\} \) such that \(\| a_0 \| = \| a_0 \| \cdot \| b \| \) for each \(b \in A \). Then \(f \in A\{x\}^\times \) if and only if pseudo.deg(f) = 0 and \(a_0 \in A^\times \).

Proof. If there exists \(g \in \sum_{n=0}^{\infty} b_n x^n \) in \(A\{x\} \) such that \(fg = 1 \), then

\[\text{pseudo.deg}(f) + \text{pseudo.deg}(g) = 0,\]
so \(\text{pseudo.deg}(f) = 0 \). In addition, \(a_0b_0 = 1 \), so \(a_0 \in A^\times \).

Conversely, suppose \(\text{pseudo.deg}(f) = 0 \) and \(a_0 \in A^\times \). Then \(f \) is regular. Hence, by Corollary 7.5, \(f = q \cdot 1 \) where \(q \in A\{x\}^\times \).

Corollary 7.7. Let \(K \) be a complete field with respect to an absolute value \(|\cdot| \) and let \(O = \{a \in K \mid |a| \leq 1\} \) be its valuation ring. Then \(K\{x\} \) is a principal ideal domain, hence a unique factorization domain. Moreover, every ideal of \(K\{x\} \) is generated by an element of \(O[x] \).

Proof. By the Weierstrass preparation theorem (Corollary 7.5), every nonzero ideal \(\mathfrak{a} \) of \(K\{x\} \) is generated by the ideal \(\mathfrak{a} \cap K[x] \) of \(K[x] \). Since \(K[x] \) is a principal ideal domain, \(\mathfrak{a} \cap K[x] = fK[x] \) for some \(f \in K[x] \). Consequently, \(\mathfrak{a} = K\{x\} \) is a principal ideal. Moreover, dividing \(f \) by one of its coefficients with highest absolute value, we may assume that \(f \in O[x] \). \qed

8 Convergent Power Series

Let \(K \) be a complete field with respect to an ultrametric absolute value \(|\cdot| \). We say that a formal power series \(f = \sum_{n=m}^{\infty} a_nx^n \) in \(K((x)) \) **converges** at an element \(c \in K \), if \(f(c) = \sum_{n=m}^{\infty} a_n c^n \) converges, i.e. \(a_n c^n \to 0 \). In this case \(f \) converges at each \(b \in K \) with \(|b| \leq |c| \). For example, each \(f \in K\{x\} \) converges at 1. We say that \(f \) **converges** if \(f \) converges at some \(c \in K^\times \).

We denote the set of all convergent power series in \(K((x)) \) by \(K((x))_0 \) and prove that \(K((x))_0 \) is a field that contains \(K\{x\} \) and is algebraically closed in \(K((x)) \).

Lemma 8.1. A power series \(f = \sum_{n=m}^{\infty} a_nx^n \) in \(K((x)) \) converges if and only if there exists a positive real number \(\gamma \) such that \(|a_n| \leq \gamma^n \) for each \(n \geq 0 \).

Proof. First suppose \(f \) converges at \(c \in K^\times \). Then \(a_n c^n \to 0 \), so there exists \(n_0 \geq 1 \) such that \(|a_n c^n| \leq 1 \) for each \(n \geq n_0 \). Choose

\[
\gamma = \max\{|c|^{-1}, |a_k|^{1/k} \mid k = 0, \ldots, n_0 - 1\}.
\]

Then \(|a_n| \leq \gamma^n \) for each \(n \geq 0 \).

Conversely, suppose \(\gamma > 0 \) and \(|a_n| \leq \gamma^n \) for all \(n \geq 0 \). Increase \(\gamma \), if necessary, to assume that \(\gamma > 1 \). Then choose \(c \in K^\times \) such that \(|c| \leq \gamma^{-1.5} \) and observe that \(|a_n c^n| \leq \gamma^{-0.5n} \) for each \(n \geq 0 \). Therefore, \(a_n c^n \to 0 \), hence \(f \) converges at \(c \). \qed

Lemma 8.2. \(K((x))_0 \) is a field that contains \(\text{Quot}(K\{x\}) \), hence also \(K(x) \).

Proof. The only difficulty is to prove that if \(f = 1 + \sum_{n=1}^{\infty} a_n x^n \) converges, then also \(f^{-1} = 1 + \sum_{n=1}^{\infty} a'_n x^n \) converges.

Indeed, for \(n \geq 1 \), \(a'_n \) satisfies the recursive relation \(a'_n = -a_n - \sum_{i=1}^{n-1} a_i a'_{n-i} \).

By Lemma 8.1, there exists \(\gamma > 1 \) such that \(|a_i| \leq \gamma^i \) for each \(i \geq 1 \). Set \(a'_0 = 1 \). Suppose, by induction, that \(|a'_j| \leq \gamma^j \) for \(j = 1, \ldots, n - 1 \). Then

\[
|a'_n| \leq \max(|a_i| \cdot |a'_{n-i}|) \leq \gamma^n.
\]

Hence, \(f^{-1} \) converges. \qed
Let \(v \) be the valuation of \(K((x)) \) defined by

\[
v(\sum_{n=m}^{\infty} a_n x^n) = m \quad \text{for } a_m, a_{m+1}, a_{m+2}, \ldots \in K \text{ with } a_m \neq 0.
\]

It is discrete, complete, its valuation ring is \(K[[x]] \), and \(v(x) = 1 \). The residue of an element \(f = \sum_{n=0}^{\infty} a_n x^n \) of \(K[[x]] \) at \(v \) is \(a_0 \), and we denote it by \(\bar{f} \). We also consider the valuation ring \(O = K[[x]] \cap K((x))_0 \) of \(K((x))_0 \) and denote the restriction of \(v \) to \(K((x))_0 \) also by \(v \). Since \(K((x))_0 \) contains \(K(x) \), it is \(v \)-dense in \(K((x)) \). Finally, we also denote the unique extension of \(v \) to the algebraic closure of \(K((x)) \) by \(v \).

Remark 8.3 (\(K((x))_0 \) is not complete). Indeed, choose \(a \in K \) such that \(|a| > 1 \). Then there exists no \(\gamma > 0 \) such that \(|a^n| \leq \gamma^n \) for all \(n \geq 1 \). By Lemma 8.1, the power series \(f = \sum_{n=0}^{\infty} a^n x^n \) does not belong to \(K((x))_0 \). Therefore, the valued field \((K((x))_0, v) \) is not complete.

Proposition 8.4. The field \(K((x))_0 \) is separably algebraically closed in \(K((x)) \).

Proof. Let \(y = \sum_{n=m}^{\infty} a_n x^n \), with \(a_n \in K \), be an element of \(K((x)) \) which is separably algebraic of degree \(d \) over \(K((x))_0 \). We have to prove that \(y \in K((x))_0 \).

- **PART A: A shift of \(y \).** Assume that \(d > 1 \) and let \(y_1, \ldots, y_d \), with \(y = y_1 \), be the (distinct) conjugates of \(y \) over \(K((x))_0 \). In particular \(r = \max(v(y - y_i) \mid i = 2, \ldots, d) \) is an integer. Choose \(s \geq r + 1 \) and let

\[
y'_i = \frac{1}{x^s}(y_i - \sum_{n=m}^{s} a_n x^n), \quad i = 1, \ldots, d.
\]

Then \(y'_1, \ldots, y'_d \) are the distinct conjugates of \(y'_1 \) over \(K((x))_0 \). Also, \(v(y'_1) \geq 1 \) and \(y'_i = \frac{1}{x^s}(y_i - y) + y'_i \), so \(v(y'_i) \leq -1, i = 2, \ldots, d \). If \(y'_i \) belongs to \(K((x))_0 \), then so does \(y \), and conversely. Therefore, we replace \(y_i \) by \(y'_i \); if necessary, to assume that

\[
(8.1) \quad v(y) \geq 1 \text{ and } v(y_i) \leq -1, \quad i = 2, \ldots, d.
\]

In particular \(y = \sum_{n=0}^{\infty} a_n x^n \) with \(a_0 = 0 \). The elements \(y_1, \ldots, y_d \) are the roots of an irreducible separable polynomial

\[
h(Y) = p_d Y^d + p_{d-1} Y^{d-1} + \cdots + p_1 Y + p_0
\]

with coefficients \(p_i \in O \). Let \(e = \min(v(p_0), \ldots, v(p_d)) \). Divide the \(p_i \), if necessary, by \(x^e \), to assume that \(v(p_i) \geq 0 \) for each \(i \) between 0 and \(d \) and that \(v(p_j) = 0 \) for at least one \(j \) between 0 and \(d \).
Part B: We prove that \(v(p_0), v(p_d) > 0, v(p_k) > v(p_1) \) if \(2 \leq k \leq d - 1 \) and \(v(p_1) = 0 \). Indeed, since \(v(y) > 0 \) and \(h(y) = 0 \), we have \(v(p_0) > 0 \). Since \(v(y_2) < 0 \) and \(h(y_2) = 0 \), we have \(v(p_d) > 0 \). Next observe that

\[
\frac{p_1}{p_d} = \pm y_2 \cdots y_d \pm \sum_{i=2}^{d} \frac{y_1 \cdots y_d}{y_i}.
\]

If \(2 \leq i \leq d \), then \(v(y_i) < v(y_1) \), so \(v(y_2 \cdots y_d) < v(\frac{y_i}{y_1}) + v(y_2 \cdots y_d) = v(\frac{y_1}{y_i}) \). Hence,

\[
(8.2) \quad v\left(\frac{p_1}{p_d}\right) = v(y_2 \cdots y_d).
\]

For \(k \) between 1 and \(d - 2 \) we have

\[
(8.3) \quad \frac{p_{d-k}}{p_d} = \pm \sum_{\sigma} \prod_{i=1}^{k} y_{\sigma(i)},
\]

where \(\sigma \) ranges over all monotonically increasing maps from \(\{1, \ldots, k\} \) to \(\{1, \ldots, d\} \). If \(\sigma(1) \neq 1 \), then \(\{y_{\sigma(1)}, \ldots, y_{\sigma(k)}\} \) is properly contained in \(\{y_2, \ldots, y_d\} \). Hence, \(v(\prod_{i=1}^{k} y_{\sigma(i)}) > v(y_2 \cdots y_d) \). If \(\sigma(1) = 1 \), then

\[
\prod_{i=1}^{k} y_{\sigma(i)} = \prod_{i=2}^{d} y_i.
\]

Hence, by (8.2) and (8.3), \(v(\frac{p_{d-k}}{p_d}) > v(\frac{p_1}{p_d}) \), so \(v(p_{d-k}) > v(p_1) \). Since \(v(p_j) = 0 \) for some \(j \) between 0 and \(d \), since \(v(p_i) \geq 0 \) for every \(i \) between 0 and \(d \), and since \(v(p_0), v(p_d) > 0 \), we conclude that \(v(p_1) = 0 \) and \(v(p_i) > 0 \) for all \(i \neq 1 \). Therefore,

\[
(8.4) \quad p_k = \sum_{n=0}^{\infty} b_{kn} x^n, \quad k = 0, \ldots, d
\]

with \(b_{kn} \in K \) such that \(b_{1,0} \neq 0 \) and \(b_{k,0} = 0 \) for each \(k \neq 1 \). In particular, \(|b_{1,0}| \neq 0 \). We shall need it to be larger that 1 in order to bound \(|a_n| \).

Part C: Making \(|b_{1,0}| \) large. We choose \(c \in K \) such that \(|c^{d-1}b_{1,0}| \geq 1 \) and let \(z = cy \). Then \(z \) is a zero of the polynomial \(g(Z) = p_d Z^d + c p_{d-1} Z^{d-1} + \cdots + c^{d-1} p_1 Z + c^{d} p_0 \) with coefficients in \(O \). Relation (8.4) remains valid except that the zero term of the coefficient of \(Z \) in \(g \) becomes \(c^{d-1} b_{1,0} \). By the choice of \(c \), its absolute value is at least 1. So, without loss, we may assume that

\[
(8.5) \quad |b_{1,0}| \geq 1.
\]
• **Part D: An estimate for** $|a_n|$. By Lemma 8.1, there exists $\gamma > 0$ such that $|b_{kn}| \leq \gamma^n$ for all $0 \leq k \leq d$ and $n \geq 1$. By induction we prove that $|a_n| \leq \gamma^n$ for each $n \geq 0$. This will prove that $y \in O$ and will conclude the proof of the lemma.

Indeed, $|a_0| = 0 < 1 = \gamma^0$. Now assume that $|a_m| \leq \gamma^m$ for each $0 \leq m \leq n - 1$. For each k between 0 and d we have that $p_k y^k = \sum_{n=0}^{\infty} c_{kn} x^n$, where

$$c_{kn} = \sum_{\sigma \in S_{kn}} b_{k,\sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)},$$

and

$$S_{kn} = \{\sigma : \{0, \ldots, k\} \to \{0, \ldots, n\} | \sum_{j=0}^{k} \sigma(j) = n\}.$$

It follows that

(8.6) $c_{0n} = b_{0n}$ and $c_{1n} = b_{1,0}a_n + b_{11}a_{n-1} + \cdots + b_{1,n-1}a_1$.

For $k \geq 2$ we have $b_{k,0} = 0$. Hence, if a term $b_{k,\sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)}$ in c_{kn} contains a_n, then $\sigma(0) = 0$, so $b_{k,\sigma(0)} = 0$. Thus,

(8.7) $c_{kn} = \text{sum of products of the form } b_{k,\sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)},$

with $\sigma(j) < n$, $j = 1, \ldots, k$.

From the relation $\sum_{k=0}^{d} p_k y^k = h(y) = 0$ we conclude that $\sum_{k=0}^{d} c_{kn} = 0$ for all n. Hence, by (8.6),

$$b_{1,0}a_n = -b_{0n} - b_{11}a_{n-1} - \cdots - b_{1,n-1}a_1 - c_{2n} - \cdots - c_{dn}.$$

Therefore, by (8.7),

(8.8) $b_{1,0}a_n = \text{sum of products of the form } - b_{k,\sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)},$

with $\sigma \in S_{kn}$, $0 \leq k \leq d$, and $\sigma(j) < n$, $j = 1, \ldots, k$.

Note that $b_{k,0} = 0$ for each $k \neq 1$ (by (8.4)), while $b_{1,0}$ does not occur on the right hand side of (8.8). Hence, for a summand in the right hand side of (8.8) indexed by σ we have

$$|b_{k,\sigma(0)} \prod_{j=1}^{k} a_{\sigma(j)}| \leq \gamma^{\sum_{j=0}^{k} \sigma(j)} = \gamma^n.$$
We conclude from \(|b_{1,0}| \geq 1 \) that \(|a_n| \leq \gamma^n \), as contended.

\[\square \]

Proposition 8.5. The field \(K((x))_0 \) is algebraically closed in \(K((x)) \). Thus, each \(f \in K((x)) \) which is algebraic over \(K(x) \) converges at some \(c \in K^\times \). Moreover, there exists a positive integer \(m \) such that \(f \) converges at each \(b \in K^\times \) with \(|b| \leq \frac{1}{m} \).

Proof. In view of Proposition 8.4, we have to prove the proposition only for \(\text{char}(K) > 0 \). Let \(f = \sum_{n=0}^{\infty} a_n x^n \in K((x)) \) be algebraic over \(K((x))_0 \). Then \(K((x))_0(f) \) is a purely inseparable extension of a separable algebraic extension of \(K((x))_0 \). By Proposition 8.4, the latter coincides with \(K((x))_0 \). Hence, \(K((x))_0(f) \) is a purely inseparable extension of \(K((x))_0 \).

Thus, there exists a power \(q \) of \(\text{char}(K) \) such that \(\sum_{n=0}^{\infty} q^n a_n x^{nq} = f^q \in K((x))_0 \). By Lemma 8.1, there exists \(\gamma > 0 \) such that \(|a_n^q| \leq \gamma^n \) for all \(n \geq 1 \). It follows that \(|a_n| \leq \gamma^n \) for all \(n \geq 1 \). By Lemma 8.1, \(f \in K((x))_0 \), so there exists \(c \in K^\times \) such that \(f \) converges at \(c \). If \(\frac{1}{m} \leq |c| \), then \(f \) converges at each \(b \in K^\times \) with \(|b| \leq \frac{1}{m} \).

\[\square \]

9 Several Variables

Starting from a complete valued field \((K, | |) \), we choose an element \(r \in K^\times \), a finite set \(I \), and for each \(i \in I \) an element \(c_i \in K \) such that \(|r| \leq |c_i - c_j| \) if \(i \neq j \). Then we set \(w_i = \frac{r}{x - c_i} \) with an indeterminate \(x \), and consider the ring \(R = K\{w_i | i \in I\} \) of all series

\[f = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} w_i^n, \]

with \(a_0, a_{in} \in K \) such that for each \(i \) the element \(a_{in} \) tends to 0 as \(n \to \infty \). The ring \(R \) is complete under the norm defined by \(\|f\| = \max_{i,n}(|a_0|, |a_{in}|) \) (Lemma 11.1).

We prove that \(R \) is a principal ideal domain (Proposition 11.8) and denote its quotient field by \(Q \). More generally for each subset \(J \) of \(I \), we denote the quotient field of \(K\{w_i | i \in J\} \) by \(P_J \). We deduce (Proposition 12.1) that \(P_J \cap P_{J'} = P_{J \cap J'} \) if \(J, J' \subseteq I \) have a nonempty intersection and \(P_J \cap P_{J'} = K(x) \) if \(J \cap J' = \emptyset \).

Thus, setting \(P_i = P_{I \setminus \{i\}} \) for \(i \in I \), we conclude that \(\bigcap_{i \in I} P_i = K(x) \). The fields \(E = K(x) \) and \(P_i, i \in I \), are the first objects of patching data (Definition 4.1) that we start to assemble.

10 A Normed Subring of \(K(x) \)

Let \(E = K(x) \) be the field of rational functions in the variable \(x \) over a field \(K \). Let \(I \) be a finite set and \(r \) an element of \(K^\times \). For each \(i \in I \) let \(c_i \) be an element
of K. Suppose $c_i \neq c_j$ if $i \neq j$. For each $i \in I$ let $w_i = \frac{r}{x-c_i} \in K(x)$. We consider the subring $R_0 = K[w_i \mid i \in I]$ of $K(x)$, prove that each of its elements is a linear combination of the powers w_i^n with coefficients in K, and define a norm on R_0.

Lemma 10.1.

(a) For all $i \neq j$ in I and for each nonnegative integer m

\[w_i w_j^m = \frac{r^m}{(c_i - c_j)^m} w_i - \sum_{k=1}^{m} \frac{r^{m+1-k}}{(c_i - c_j)^{m+1-k}} w_j^k. \]

(b) Given nonnegative integers m_i, $i \in I$, not all zero, there exist $a_{ik} \in K$ such that

\[\prod_{i \in I} w_i^{m_i} = \sum_{i \in I} \sum_{k=1}^{m_i} a_{ik} w_i^k. \]

(c) Every $f \in K[w_i \mid i \in I]$ can be uniquely written as

\[f = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} w_i^n \]

where $a_0, a_{in} \in K$ and almost all of them are zero.

(d) Let $i \neq j$ be elements of I. Then $\frac{w_i}{w_j} = 1 + \frac{c_i - c_j}{r} w_i \in K[w_i] \text{ is invertible in } K[w_i, w_j]$.

Proof.

- **Proof of (a) and (b):** Starting from the identity

\[w_i w_j = \frac{r}{c_i - c_j} w_i - \frac{r}{c_i - c_j} w_j \]

one proves (10.1) by induction on m. Then one proceeds by induction on $|I|$ and $\max_{i \in I} m_i$ to prove (10.2).

- **Proof of (c):** The existence of the presentation (10.3) follows from (b). To prove the uniqueness we assume that $f = 0$ in (10.3) but $a_{ik} \neq 0$ for some $j \in I$ and $k \in \mathbb{N}$. Then, $\sum_{n=1}^{\infty} a_j w_j^n = -a_0 - \sum_{i \neq j} \sum_{n=1}^{\infty} a_{in} w_i^n$. The left hand side has a pole at c_j while the right hand side has not. This is a contradiction.

- **Proof of (d):** Multiplying $\frac{r}{w_{j}} - \frac{r}{w_{i}} = c_i - c_j$ by $\frac{w_i}{r}$ we get that

\[\frac{w_i}{w_j} = 1 + \frac{c_i - c_j}{r} w_i \]
is in $K[w_i]$. Similarly, $\frac{w_i}{w_j} \in K[w_j]$. Hence $\frac{w_i}{w_j}$ is invertible in $K[w_i, w_j]$.

\[\square\]

Through the rest of the section and sections 11, 12, and 13, we make the following assumption:

Assumption 10.2. The field K is complete with respect to a nontrivial ultrametric absolute value $|\ |$ and

\[(10.5)\quad |r| \leq |c_i - c_j| \quad \text{for all } i \neq j.
\]

Geometrically, Condition (10.5) means that the open disks $\{a \in K \mid |a - c_i| < r\}$, $i \in I$, of K are disjoint.

Let $E = K(x)$ be the field of rational functions over K in the variable x. We define a function $||\ |$ on $R_0 = K[w_i \mid i \in I]$ using the unique presentation (10.3):

\[\|a_0 + \sum_{i \in I} \sum_{n \geq 1} a_{in} w_i^n\| = \max_{i,n}\{|a_0|, |a_{in}|\}.\]

Then $\|f\| \geq 0$ for each $f \in R_0$, $\|f\| = 0$ if and only if $f = 0$ (Lemma 10.1(c)), and $\|f + g\| \leq \max(\|f\|, \|g\|)$ for all $f, g \in R_0$. Moreover, $\|w_i\| = 1$ for each $i \in I$ but $\|w_i w_j\| = \frac{|r|}{|c_i - c_j|}$ (by (10.4)) is less than 1 if $|r| < |c_i - c_j|$. Thus, $||\ |$ is in general not an absolute value. However, by (10.1) and (10.5)

\[\|w_i w_j^m\| \leq \max_{1 \leq k \leq m} \left(\frac{r}{c_i - c_j}^m, \frac{r}{c_i - c_j}^{m+1-k} \right) \leq 1.
\]

By induction, $\|w_i^k w_j^m\| \leq 1$ for each k, so $\|fg\| \leq \|f\| \cdot \|g\|$ for all $f, g \in R_0$. Moreover, if $a \in K$ and $f \in R_0$, then $\|af\| = \|a\| \cdot \|f\|$. Therefore, $||\ |$ is a norm on R_0 in the sense of Definition 6.1.

\section{11 Mittag-Leffler Series}

We keep the notation of Section 10 and Assumption 10.2 and proceed to define rings of convergent power series of several variables over K. In the language of rigid geometry, these are the rings of holomorphic functions on the complements of finitely many open discs of the projective line $\mathbb{P}^1(K)$.

Let $R = K\{w_i \mid i \in I\}$ be the completion of $R_0 = K[w_i \mid i \in I]$ with respect to $||\ |$ (Lemma 6.5). Our first result gives a Mittag-Leffler decomposition of each $f \in R$. It generalizes Lemma 10.1(c):

Lemma 11.1. Each element f of R has a unique presentation as a Mittag-Leffler series

\[(11.1)\quad f = a_0 + \sum_{i \in I} \sum_{n=1}^\infty a_{in} w_i^n,
\]
where \(a_0, a_n \in K \), and \(|a_in| \to 0 \) as \(n \to \infty \). Moreover,
\[
\|f\| = \max_{i,n} \{|a_0|, |a_in|\}.
\]

Proof. Each \(f \) as in (11.1) is the limit of the sequence \((f_d)_{d \geq 1}\) of its partial sums \(f_d = a_0 + \sum_{i \in I} \sum_{n=1}^{d} a_inw^n_i \in R_0 \), so \(f \in R \). Since \(\|f_d\| = \max_{i,n} \{|a_0|, |a_in|\} \) for each sufficiently large \(d \), we have \(\|f\| = \max_{i,n} \{|a_0|, |a_in|\} \). If \(f = 0 \) in (11.1), then \(0 = \max_{i,n} \{|a_0|, |a_in|\} \), so \(a_0 = a_in = 0 \) for all \(i \) and \(n \). It follows that the presentation (11.1) is unique.

On the other hand, let \(g \in R \). Then there exists a sequence of elements \(g_k = a_{k,0} + \sum_{i \in I} \sum_{n=1}^{\infty} a_{k,in}w^n_i \), \(k = 1, 2, 3, \ldots \), in \(R_0 \), that converges to \(g \). In particular, for each pair \((k, i)\) we have \(a_{k,in} = 0 \) if \(n \) is sufficiently large. Also, the sequence \((g_k)_{k=1}^{\infty} \) is Cauchy. Hence, each of the sequences \(\{a_{k,0} \mid k = 1, 2, 3, \ldots \} \) and \(\{a_{k,in} \mid k = 1, 2, 3, \ldots \} \) is Cauchy. Since \(K \) is complete, \(a_{k,0} \to a_0 \) and \(a_{k,in} \to a_in \) for some \(a_0, a_in \in K \). Fix \(i \in I \) and let \(\varepsilon > 0 \) be a real number. There is an \(m \) such that for all \(k \geq m \) and all \(n \) we have \(|a_{k,in} - a_{m,in}| \leq \|g_k - g_m\| \leq \varepsilon \). If \(n \) is sufficiently large, then \(a_{m,in} = 0 \), and hence \(|a_{k,in}| \leq \varepsilon \). Therefore, \(|a_in| \leq \varepsilon \). It follows that \(|a_in| \to 0 \). Define \(f \) by (11.1). Then \(f \in R \) and \(g_k \to f \) in \(R \).

Consequently, \(g = f \).

If \(I = \emptyset \), then \(R = R_0 = K \).

We call the partial sum \(\sum_{n=1}^{\infty} a_{in}w^n_i \) in (11.1) the \textit{i-component} of \(f \).

Remark 11.2. Let \(i \in I \). Then \(K\{w_i\} = \{ \sum_{n=0}^{\infty} a_nw^n_i \mid a_n \to 0 \} \) is a subring of \(R \), the completion of \(K[w_i] \) with respect to the norm. Consider the ring \(K\{x\} \) of converging power series over \(K \). By Lemma 7.1(d), there is a homomorphism \(K\{x\} \to K\{w_i\} \) given by \(\sum_{n=0}^{\infty} a_nx^n \mapsto \sum_{n=0}^{\infty} a_nw^n_i \). By Lemma 11.1, this is an isomorphism of normed rings.

Remark 11.3. Let \((L, |\cdot|)\) be a complete valued field extending \((K, |\cdot|)\). Each \(c \in L \) with \(|c - c_i| \geq |r| \), for all \(i \in I \), defines a continuous \textit{evaluation homomorphism} \(R \to L \) given by \(f = a_0 + \sum_{i \in I} \sum_{n} a_{in}w^n_i \mapsto f(c) = a_0 + \sum_{i \in I} \sum_{n} a_{in}(\frac{r}{c - c_i})^n \). Indeed, \(x \mapsto c \) defines a \(K \)-homomorphism \(\phi : K[x] \to L \). Let \(P \) be its kernel. Then \(\phi \) extends to the localization \(K[x]_P \). Since \(\phi(x - c_i) = c - c_i \neq 0 \), we have \(w_i \in K[x]_P \), for each \(i \in I \). Thus, \(\phi \) restricts to a homomorphism \(R_0 \to L \), given by the above formula. Since \(\left| \frac{r}{c - c_i} \right| \leq 1 \) for each \(i \), we have \(|f(c)| \leq \|f\| \) for each \(f \in R_0 \). Hence, \(\phi \) uniquely extends to a continuous homomorphism \(\phi : R \to L \).
Lemma 11.4 (Degree shifting). Let $f \in R$ be given by (11.1). Fix $i \neq j$ in I. Let $\sum_{n=1}^{\infty} a_{in} w_i^n$ be the i-component of $\frac{w_j}{w_i} f \in R$. Then

$$a_{in}' = - \sum_{\nu=n+1}^{\infty} \frac{a_{i\nu} r^{\nu-n}}{(c_j - c_i)^{\nu-n}}$$

(11.2)

$$= -\frac{r}{c_j - c_i} \sum_{\nu=n+1}^{\infty} a_{i\nu} \left(\frac{r}{c_j - c_i} \right)^{\nu-(n+1)} , \quad n = 1, 2, 3, \ldots$$

Furthermore, let $m \geq 1$ be an integer, and let $\sum_{n=1}^{\infty} b_{in} w_i^n$ be the i-component of $\left(\frac{w_j}{w_i} \right)^m f$. Let $\varepsilon \geq 0$ be a real number and let d be a positive integer.

(a) If $|a_{in}| \leq \varepsilon$ for each $n \geq d+1$, then $|b_{in}| \leq |r|_{c_j-c_i}^{m \varepsilon}$ for each $n \geq d+1 - m$.

(b) Suppose $d > m$. If $|a_{in}| < \varepsilon$ for each $n \geq d+1$ and $|a_{id}| = \varepsilon$, then $|b_{in}| < |r|_{c_j-c_i}^{d \varepsilon}$ for each $n \geq d+1 - m$ and $|b_{i,d-m}| = |r|_{c_j-c_i}^{d-m \varepsilon}$.

(c) $\sum_{n=1}^{\infty} a_{in} w_i^n$ is a polynomial in w_i if and only if $\sum_{n=1}^{\infty} b_{in} w_i^n$ is.

Proof. By Lemma 10.1(d), $\frac{w_j}{w_i} \in R^x$, so $\left(\frac{w_j}{w_i} \right)^m f \in R$ for each m and the above statements make sense.

• **Proof of (11.2):** We may assume that $a_0 = a_{i1} = 0$ and $a_{kv} = 0$ for each $k \neq i$ and each ν. Indeed, $\frac{w_j}{w_i} = 1 + (c_j - c_i) \frac{w_j}{r} \in K\{w_j\}$. Hence, $\frac{w_j}{w_i} \cdot w'_k \in K\{w_l \mid l \neq i\}$. Furthermore, $\frac{w_j}{w_i} \cdot w_i = w_j \in K\{w_l \mid l \neq i\}$. Hence, by (11.1), a_0, a_{i1}, and the a_{kv} do not contribute to the i-component of $\frac{w_j}{w_i} f$.

Thus, $f = \sum_{\nu=2}^{\infty} a_{i\nu} w_i^{\nu}$. Hence, by (10.1) of Section 10,

$$\frac{w_j}{w_i} f = \sum_{\nu=2}^{\infty} a_{i\nu} w_j w_i^{\nu-1} = \sum_{\nu=2}^{\infty} a_{i\nu} \left[\frac{r^{\nu-1}}{(c_j - c_i)^{\nu-1}} w_j - \sum_{n=1}^{\nu-1} \frac{r^{\nu-n}}{(c_j - c_i)^{\nu-n}} w_i^n \right]$$

$$= \sum_{\nu=2}^{\infty} \frac{a_{i\nu} r^{\nu-1}}{(c_j - c_i)^{\nu-1}} w_j - \sum_{n=1}^{\nu-1} \sum_{\nu=n+1}^{\infty} \frac{a_{i\nu} r^{\nu-n}}{(c_j - c_i)^{\nu-n}} w_i^n$$

from which (11.2) follows.

• **Proof of (a) and (b):** By induction on m it suffices to assume that $m = 1$. In this case we have to prove: (a) If $|a_{in}| \leq \varepsilon$ for each $n \geq d+1$, then $|a_{in}'| \leq |r|_{c_j-c_i} \varepsilon$ for each $n \geq d$; (b) assuming $d \geq 2$, if $|a_{in}| < \varepsilon$ for each $n \geq d+1$ and $|a_{id}| = \varepsilon$, then $|a_{in}'| < |r|_{c_j-c_i} \varepsilon$ for each $n \geq d$ and $|a_{i,d-1}| = |r|_{c_j-c_i} \varepsilon$. By Condition (10.5) of Section 10, $|r|_{c_j-c_i} \leq 1$. Hence, (a) follows from (11.2) with $n = d, d+1, d+2, \ldots$ and (b) follows from (11.2) with $n = d - 1, d, d+1, \ldots$.

Moshe Jarden
Proof of (c): Again, it suffices to prove that $\sum_{n=1}^{\infty} a_{in}w_i^n$ is a polynomial if and only if $\sum_{n=1}^{\infty} a'_{in}w_i^n$ is a polynomial.

If $\sum_{n=1}^{\infty} a_{in}w_i^n$ is a polynomial, then $a_{in} = 0$ for all large n. It follows from (11.2) that $a'_{i,n} = 0$ for all large n. Hence, $\sum_{n=1}^{\infty} a_{in}w_i^n$ is a polynomial.

If $\sum_{n=1}^{\infty} a_{in}w_i^n$ is not a polynomial, then for each d_0 there exists $d > d_0$ such that $a_{id} \neq 0$. Since $|a_{in}| \to 0$ as $n \to \infty$, there are only finitely many $n \geq d$ with $|a_{in}| \geq |a_{id}|$. Replacing d with the largest of those n's, if necessary, we may assume that $|a_{in}| < |a_{id}|$ for each $n \geq d + 1$. By (b), $a'_{i,d-1} \neq 0$. Consequently, $\sum_{n=1}^{\infty} a'_{in}w_i^n$ is not a polynomial.

\[\square \]

We apply degree shifting (albeit not yet Lemma 11.4) to generalize the Weierstrass preparation theorem (Corollary 7.5) to Mittag-Leffler series.

Lemma 11.5. Suppose $I \neq \emptyset$ and let $0 \neq f \in R$. Then there is an $i \in I$ such that $f = pu$ with $p \in K[w_i]$ and $u \in R^\times$.

Proof. Write f in the form (11.1). Then, there is a coefficient with absolute value $\|f\|$. Thus we are either in Case I or Case II below:

- **Case I:** $|a_0| = \|f\| > |a_{in}|$ for all i and n. Multiply f by a_0^{-1} to assume that $a_0 = 1$. Then $\|1 - f\| < 1$. By Lemma 6.3(f), $f \in R^\times$, so $p = 1$ and $u = f$ satisfy the claim of the lemma for each $i \in I$.

- **Case II:** There exist i and $d \geq 1$ such that $|a_{id}| = \|f\|$. Increase d, if necessary, to assume that $|a_{in}| < |a_{id}| = \|f\|$ for all $n > d$.

Let $A = K\{w_k \mid k \neq i\}$. This is a complete subring of R. We introduce a new variable z, and consider the ring $A\{z\}$ of convergent power series in z over A (Lemma 7.1(c)). Since $a_{id} \in K^\times \subseteq A^\times$, the element

$$f = (a_0 + \sum_{k \neq i} \sum_{n=1}^{\infty} a_{kn}w_k^n) + \sum_{n=1}^{\infty} a_{in}z^n$$

of $A\{z\}$ is regular of pseudo degree d. By Corollary 7.5, we have $\hat{f} = \hat{p}\hat{u}$, where \hat{u} is a unit of $A\{z\}$ and \hat{p} is a monic polynomial of degree d in $A[z]$.

By definition, $\|w_i\| = 1$. By Lemma 7.1(d), the evaluation homomorphism $\theta: A\{z\} \to R$ defined by $\sum c_nz^n \mapsto \sum c_nw_i^n$, with $c_n \in A$, maps \hat{f} onto f, \hat{u} onto a unit of R, and \hat{p} onto a polynomial p of degree d in $A[w_i]$. Replacing f by p and using Lemma 10.1, we may assume that $f \in A[w_i] = A + K[w_i]$ is a polynomial of degree d in w_i, that is,

$$f = (a_0 + \sum_{k \neq i} \sum_{n=1}^{\infty} a_{kn}w_k^n) + \sum_{n=1}^{d} a_{in}w_i^n.$$
If \(I = \{ i \} \), then \(A[w_i] = K[w_i] \), and we are done. If \(|I| \geq 2 \), we choose a \(j \in I \) distinct from \(i \). By Lemma 10.1(d), \(\frac{w_j}{w_i} = 1 + c_{j-i} R \), \(w_j \) is invertible in \(R_0 \), hence in \(R \). Since \(\frac{w_j}{w_i} \in A \), we have \(\frac{w_j}{w_i}(\sum_{k \neq i} a_{kn} w_k^n) \in A \). In addition, by Lemma 10.1,

\[
\frac{w_j}{w_i} \sum_{n=1}^{d} a_{in} w_i^n = \sum_{n=1}^{d} a_{in} w_i^{n-1} w_j
\]

is a polynomial in \(A[w_i] \) of degree \(\leq d - 1 \). Using induction on \(d \), we may assume that \(f \in A \). Finally, we apply the induction hypothesis (on \(|I| \)) to conclude the proof.

\(\square \)

Lemma 11.6. Let \(j \in I \). Then each \(f \in R \) can be written as \(f = pu \) with \(p \in K[w_j], \|p\| = 1 \), and \(u \in R^x \).

Proof. Lemma 11.5 gives a decomposition \(f = p_1 u_1 \) with \(u_1 \in R^x \) and \(p_1 \in K[w_i] \) for some \(i \in I \). If \(i = j \), we set \(p = p_1 \) and \(u = u_1 \). If \(i \neq j \), we may assume that \(f \in K[w_i] \). Thus, \(f = \sum_{n=0}^{d} a_n w_i^n \) with \(a_d \neq 0 \). By Lemma 10.1(d), \(\frac{w_j}{w_i} \) is invertible in \(R_0 \), hence in \(R \). Multiplying \(f \) by \(\left(\frac{w_j}{w_i} \right)^d \) gives

\[
\left(\frac{w_j}{w_i} \right)^d f = \sum_{n=0}^{d} a_n \left(\frac{w_j}{w_i} \right)^{d-n} w_j^n = \sum_{n=0}^{d} a_n \left(1 + \frac{c_{j-i} w_j}{w_i} \right)^{d-n} w_j^n \in K[w_j].
\]

Thus, \(f = pu \) with \(p \in K[w_j] \) and \(u \in R^x \). Finally, we may divide \(p \) by a coefficient with the highest absolute value to get that \(\|p\| = 1 \). \(\square \)

Corollary 11.7. Let \(0 \neq g \in R \). Then \(R_0 + gR = R \).

Proof. Since \(R = \sum_{i \in I} K\{w_i\} \) and \(R_0 = K[w_i \mid i \in I] = \sum_{i \in I} K[w_i] \) (Lemma 10.1), it suffices to prove for each \(i \in I \) and for every \(f \in K[w_i] \) that there is \(h \in K[w_i] \) such that \(f - h \in gR \). By Lemma 11.6, we may assume that \(g \in K[w_i] \). By Remark 11.2, there is a \(K \)-isomorphism \(K\{z\} \to K\{w_i\} \) that maps \(K[z] \) onto \(K[w_i] \). Therefore the assertion follows from the Weierstrass Division Theorem (Proposition 7.4) for the ring \(K\{z\} \). \(\square \)

The next result generalizes Proposition 7.7 to Mittag-Leffler series.

Proposition 11.8. The ring \(R = K\{w_i \mid i \in I\} \) is a principal ideal domain, hence a unique factorization domain. Moreover, for each \(i \in I \), each ideal \(a \) of \(R \) is generated by an element \(p \in K[w_i] \) such that \(a \cap K[w_i] = pK[w_i] \).
Proof. Let $f_1, f_2 \in R$ with $f_1 f_2 = 0$. Choose an $i \in I$. By Lemma 11.6, $f_1 = p_1u_1$ and $f_2 = p_2u_2$ with $p_1, p_2 \in K[w_i]$ and $u_1, u_2 \in R^x$. Then $p_1p_2 = f_1 f_2 (u_1 u_2)^{-1} = 0$, and hence either $p_1 = 0$ or $p_2 = 0$. Therefore, either $f_1 = 0$ or $f_2 = 0$. Consequently, R is an integral domain.

By Lemma 11.6, each ideal a of R is generated by the ideal $a \cap K[w_i]$ of $K[w_i]$. Since $K[w_i]$ is a principal ideal domain, $a \cap K[w_i] = pK[w_i]$ for some $p \in K[w_i]$. Consequently, $a = pR$ is a principal ideal.

\[\square\]

12 Fields of Mittag-Leffler Series

In the notation of Sections 10 and 11 we consider for each nonempty subset J of I the integral domain $R_J = K\{w_i \mid i \in J\}$ (Proposition 11.8) and let $P_J = \text{Quot}(R_J)$. For $J = \emptyset$, we set $P_J = K(x)$. All of these fields are contained in the field $Q = P_I$. The fields $P_i = P_i \setminus \{i\}, i \in I$, will be our ‘analytic’ fields in our patching data. As in Definition 4.1, $P''_J = \bigcap_{j \neq i} P_J$ will be useful auxiliary fields.

Proposition 12.1. Let J and J' be subsets of I. Then, $P_J \cap P_{J'} = P_{J \cap J'}$.

Proof. If either $J = \emptyset$ or $J' = \emptyset$, then $P_J \cap P_{J'} = K(x)$, by definition. We therefore assume that $J, J' \neq \emptyset$. Let $j \in J$. Then $K[w_j] \subseteq R_J$, hence $K(x) = K(w_j) \subseteq P_J$. Similarly $K(x) \subseteq P_{J'}$. If $J \cap J' = \emptyset$, then, by the unique representation of elements in R appearing in (11.1) of Lemma 11.1, we have $R_{J \cap J'} = R_J \cap R_{J'}$, so $P_{J \cap J'} \subseteq P_J \cap P_{J'}$.

For the converse inclusion, let $0 \neq f \in P_J \cap P_{J'}$. Fix $j \in J$ and $j' \in J'$; if $J \cap J' = \emptyset$, then $g_j, g_{j'} \in R_J$. Write $f = f_1/g_1$ with $f_1, g_1 \in R_J$. By Lemma 11.6, $g_1 = p_1u_1$, where $0 \neq p_1 \in K[w_j]$ and $u_1 \in R_J^x$. Replace f_1 by $f_1 u_1^{-1}$ to assume that $g_1 \in K[w_j]$. Similarly $f = f_2/g_2$ with $f_2 \in R_J$ and $g_2 \in K[w_{j'}]$. If $J \cap J' \neq \emptyset$, then $g_1, g_2 \in R_J \cap R_{J'} = R_{J \cap J'}$. Thus $g_2f_1 = g_1f_2 \in R_J \cap R_{J'} = R_{J \cap J'} \subseteq P_{J \cap J'}$, and hence $f = \frac{g_2f_1}{g_1f_2} \in P_{J \cap J'}$.

Now suppose $J \cap J' = \emptyset$. Let $g_1 = \sum_{n=0}^{d_1} b_n w_j^n$ with $b_n \in K$. Put $h_1 = (\frac{w_j}{w_{j'}})^{d_1} g_1$. Since $\frac{w_j}{w_{j'}} \in K[w_{j'}]$ (Lemma 10.1(d)), we have $h_1 = \sum_{n=0}^{d_1} b_n (\frac{w_j}{w_{j'}})^{d_1-n} w_{j'}^n \in K[w_{j'}]$. Similarly there is an integer $d_2 \geq 0$ such that $h_2 = (\frac{w_j}{w_{j'}})^{d_2} g_2 \in K[w_j]$. Let $d = d_1 + d_2$. Then, for each $k \in J$

\begin{equation}
(12.1) \quad f_1h_2 \cdot \left(\frac{w_j}{w_k}\right)^d = f_2h_1 \cdot \left(\frac{w_{j'}}{w_k}\right)^d.
\end{equation}

Note that $f_1h_2 \in R_J$ while $f_2h_1 \in R_{J'}$. In particular, the k-component of f_2h_1 is zero. By Lemma 11.4(c), the k-component of $f_2h_1 \cdot (\frac{w_j}{w_k})^d$ is a polynomial in w_k. By (12.1), the k-component of $f_1h_2 \cdot (\frac{w_j}{w_k})^d$ is a polynomial in w_k. Hence, again by Lemma 11.4(c), the k-component of f_1h_2 is a polynomial in w_k.

We conclude that $f_1h_2 \in K[w_k \mid k \in J]$, so $f = \frac{f_1h_2}{g_1h_2} \in K(x)$.

\[\square\]
Corollary 12.2. For each $i \in I$ we have $P'_i = P_{\{i\}}$. Also, $\bigcap_{j \in I} P_j = K(x)$.

Proof. We apply Proposition 12.1 several times:

$$P'_i = \bigcap_{j \neq i} P_j = \bigcap_{j \neq i} P_{I \setminus \{j\}} = P'_{\bigcap_{j \neq i} I \setminus \{j\}} = P_{\{i\}}.$$

For the second equality we choose an $i \in I$. Then

$$\bigcap_{j \in I} P_j = P_{I \setminus \{i\}} \cap \bigcap_{j \neq i} P_j = P_{I \setminus \{i\}} \cap P_{\{i\}} = K(x),$$

as claimed. \qed

13 Factorization of Matrices over Complete Rings

We show in this section how to decompose a matrix over a complete ring into a product of matrices over certain complete subrings. This will establish the decomposition condition of the definition of patching data (Definition 4.1) in our setup.

Lemma 13.1. Let $(M, \|\|)$ be a complete normed ring and let $0 < \varepsilon < 1$. Consider elements $a_1, a_2, a_3, \ldots \in M$ such that $\|a_i\| \leq \varepsilon$ for each i and $\|a_i\| \to 0$. Let

$$p_i = (1 - a_1) \cdots (1 - a_i), \quad i = 1, 2, 3, \ldots.$$

Then, the sequence $(p_i)_{i=1}^{\infty}$ converges to an element of M^\times.

Proof. For each $i \geq 1$ we have $\|p_i\| \leq \|1 - a_1\| \cdots \|1 - a_i\| \leq 1$. Setting $p_0 = 1$, we also have $p_i = p_{i-1}(1 - a_i)$. Hence,

$$\|p_i - p_{i-1}\| \leq \|p_{i-1}\| \cdot \|a_i\| \leq \|a_i\| \to 0.$$

Thus, $(p_i)_{i=1}^{\infty}$ is a Cauchy sequence, so it converges to some $p \in M$. Furthermore,

$$\|p_k - 1\| = \|\sum_{i=1}^{k} (p_i - p_{i-1})\| \leq \max_{i} \|a_i\| \leq \varepsilon.$$

Consequently, $\|p - 1\| < 1$. By Lemma 6.3(f), $p \in M^\times$. \qed

Lemma 13.2 (Cartan’s Lemma). Let $(M, \|\|)$ be a complete normed ring. Let M_1 and M_2 be complete subrings of M. Suppose

(II) for each $a \in M$ there are $a^+ \in M_1$ and $a^- \in M_2$ with $\|a^+\|, \|a^-\| \leq \|a\|$ such that $a = a^+ + a^-$.

Then for each $b \in M$ with $\|b - 1\| < 1$ there exist $b_1 \in M_1^\times$ and $b_2 \in M_2^\times$ such that $b = b_1 b_2$.

Proof. Let $a_1 = b - 1$ and $\varepsilon = \|a_1\|$. Then $0 \leq \varepsilon < 1$. The condition

$$1 + a_{j+1} = (1 - a_j^+)(1 + a_j)(1 - a_j^-),$$

with a_j^+, a_j^- associated to a_j by (II), recursively defines a sequence $(a_j)_{j=1}^\infty$ in M. Use the relation $a_j = a_j^+ + a_j^-$ to rewrite (13.1):

$$a_{j+1} = a_j^+ a_j^- - a_j^- a_j + a_j^+ a_j^-.$$

Inductively assume that $\|a_j\| \leq \varepsilon^{2j-1}$. Since $\|a_j^+\|, \|a_j^-\| \leq \|a_j\|$, (13.2) implies that $\|a_{j+1}\| \leq \max(\|a_j\|^2, \|a_j\|^3) = \|a_j\|^2 \leq \varepsilon^{2j}$. Therefore, $a_j \to 0$, $a_j^- \to 0$, and $a_j^+ \to 0$. Further, by (13.1),

$$1 + a_{j+1} = (1 - a_j^+) \cdots (1 - a_j^+) b (1 - a_j^-) \cdots (1 - a_j^-).$$

By Lemma 13.1, the partial products $(1 - a_1^-) \cdots (1 - a_j^-)$ converge to some $b'_2 \in M_2^\times$. Similarly, the partial products $(1 - a_1^+) \cdots (1 - a_j^+)$ converge to some $b'_1 \in M_1^\times$. Passing to the limit in (13.3), we get $1 = b'_1 b b'_2$. Therefore, $b = (b'_1)^{-1} (b'_2)^{-1}$, as desired.

Lemma 13.3. Let A be a complete integral domain with respect to an absolute value $\| \|$, A_1, A_2 complete subrings of A, and A_0 a dense subring of A. Set $E_i = \text{Quot}(A_i)$ for $i = 0, 1, 2$ and $E = \text{Quot}(A)$. Suppose these objects satisfy the following conditions:

1. (13.4a) For each $a \in A$ there are $a^+ \in A_1$ and $a^- \in A_2$ with $|a^+|, |a^-| \leq |a|$ such that $a = a^+ + a^-.$
2. (13.4b) $A = A_0 + gA$ for each nonzero $g \in A_0$.
3. (13.4c) For every $f \in A$ there are $p \in A_0$ and $u \in A^\times$ such that $f = pu$.
4. (13.4d) $E_0 \subseteq E_2$.

Then, for every positive integer n and for each $b \in \text{GL}_n(E)$ there are $b_1 \in \text{GL}_n(E_1)$ and $b_2 \in \text{GL}_n(E_2)$ such that $b = b_1 b_2$.

Proof. As in Example 6.4(d), we define the norm of a matrix $a = (a_{ij}) \in M_n(A)$ by $\|a\| = \max |a_{ij}|$ and note that $M_n(A)$ is a complete normed ring, $M_n(A_1), M_n(A_2)$ are complete normed subrings of $M_n(A)$, and $M_n(A_0)$ is a dense subring of $M_n(A)$. Moreover, by (13.4a), for each $a \in M_n(A)$ there are $a^+ \in M_n(A_1)$ and $a^- \in M_n(A_2)$ with $\|a^+\|, \|a^-\| \leq \|a\|$ such that $a = a^+ + a^-.$

By Condition (13.4c) each element of E is of the form $\frac{1}{n} f$, where $f \in A$ and $h \in A_0$, $h \neq 0$. Hence, there is $h \in A_0$ such that $hb \in M_n(A)$ and $h \neq 0$. If
hb = b_1b_2', where b_1 \in \text{GL}_n(E_1) and b_2' \in \text{GL}_n(E_2), then b = b_1b_2 with b_2 = \frac{1}{h}b_2' \in \text{GL}_n(E_2). Thus, we may assume that b \in \text{M}_n(A).

Let d \in A be the determinant of b. By Condition (13.4c) there are g \in A_0 and u \in A^\times such that d = gu. Let b'' \in \text{M}_n(A) be the adjoint matrix of b, so that bb'' = d \cdot 1, where 1 is here the unit of \text{M}_n(A). Let b' = u^{-1}b''. Then b' \in \text{M}_n(A) and bb' = g \cdot 1.

We set

\[V = \{a' \in \text{M}_n(A) \mid ba' \in \text{gM}_n(A)\} \quad \text{and} \quad V_0 = V \cap \text{M}_n(A_0). \]

Then V is an additive subgroup of \text{M}_n(A) and \text{gM}_n(A) \leq V. By (13.4b), \text{M}_n(A) = \text{M}_n(A_0) + \text{gM}_n(A). Hence V = V_0 + \text{gM}_n(A). Since \text{M}_n(A_0) is dense in \text{M}_n(A), the set \text{gM}_n(A_0) is dense in \text{gM}_n(A). Therefore, V_0 = V_0 + \text{gM}_n(A_0) is dense in V = V_0 + \text{gM}_n(A). Since b' \in V, there is a_0 \in V_0 such that \|b' - a_0\| < \frac{1}{|h|}. In particular, a_0 \in \text{M}_n(A_0) and ba_0 \in \text{gM}_n(A).

Put a = \frac{1}{g}a_0 \in \text{M}_n(E_0). Then ba \in \text{M}_n(A) and \|1 - ba\| = \|\frac{1}{g}(b' - a_0)\| \leq \frac{1}{|g|}\|b\| \cdot \|b' - a_0\| < 1, where the first occurrence of 1 is the identity element of \text{M}_n(A). It follows from Lemma 6.3(f) that ba \in \text{GL}_n(A). In particular \text{det}(a) \neq 0 and therefore a \in \text{GL}_n(E_0) \leq \text{GL}(E_2). By Lemma 13.2, there are b_1 \in \text{GL}_n(A_1) and b_2' \in \text{GL}_n(A_2) \leq \text{GL}_n(E_2) such that ba = b_1b_2'. Thus b = b_1b_2, where b_1 \in \text{GL}_n(A_1) \leq \text{GL}_n(E_1) and b_2' = b_2a^{-1} \in \text{GL}_n(E_2).

We apply Corollary 13.3 to the rings and fields of Section 12.

Lemma 13.4. Let B \in \text{GL}_n(Q).

(a) For each partition I = J \cup J' there exist B_1 \in \text{GL}_n(P_J) and B_2 \in \text{GL}_n(P_{J'}) such that B = B_1B_2.

(b) For each i \in I there exist B_1 \in \text{GL}_n(P_i) and B_2 \in \text{GL}_n(P_i') such that B = B_1B_2.

Proof. Assertion (b) of the lemma is a special case of Assertion (a). Thus, it suffices to prove Assertion (a).

We may assume without loss that both J and J' are nonempty and apply Lemma 13.3 to the rings R, R_J, R_{J'}, R_0 rather than A, A_1, A_2, A_0, where R_0 = K[w_i \mid i \in I].

By definition, R, R_J, and R_{J'} are complete rings (Second paragraph of Section 11). Given f \in R, say, f = a_0 + \sum_{i \in J} \sum_{k=1}^{\infty} a_{ik}w_i^k \ (\text{Lemma 11.1}), we let f_1 = a_0 + \sum_{i \in J} \sum_{k=1}^{\infty} a_{ik}w_i^k and f_2 = \sum_{i \in J'} \sum_{k=1}^{\infty} a_{ik}w_i^k. Then \|f_i\| \leq \|f\|, i = 1, 2 and f = f_1 + f_2. This proves Condition (13.4a) in our context.

By definition, R is the completion of R_0, so R_0 is dense in R and K(x) = \text{Quot}(R_0) is contained in both P_J = \text{Quot}(R_J) and P_{J'} = \text{Quot}(R_{J'}). Conditions (13.4b) and (13.4c) follow from Corollary 11.7 and Lemma 11.6, respectively. Our Corollary is therefore a special case of Lemma 13.3. \qed
We apply Corollary 12.2 and Lemma 13.4 to put together patching data whose analytic fields are the fields P_i introduced above.

Proposition 13.5. Let K be a complete field with respect to an ultrametric absolute value $\| \cdot \|$. Let x be an indeterminate, G a finite group, r an element of K^\times, and I a finite set with $|I| \geq 2$. For each $i \in I$ let G_i be a subgroup of G. F_i a finite Galois extension of $E = K(x)$ with $\text{Gal}(F_i/K) \cong G_i$, and $c_i \in K^\times$ such that $|r| \leq |c_i - c_j|$ if $i \neq j$. Set $w_i = \frac{r}{x-c_i}$, $P_i = \text{Quot}(K\{w_j \mid j \in I \setminus \{i\}\})$, $P'_i = \text{Quot}(K\{w_i \mid i \in I\})$, and $Q = \text{Quot}(K\{w_i \mid i \in I\})$. Suppose $G = \langle G_i \mid i \in I \rangle$ and $F_i \subseteq P'_i$ for each $i \in I$. Then $E = (E, F_i, P_i, Q, G_i, G)_{i \in I}$ is patching data.

Proof. Our assumptions imply conditions (4.1a) and (4.1d) of Definition 4.1. By Corollary 12.2, $P'_i = P_{\{i\}} = \bigcap_{j \neq i} P_1 \setminus \{j\} = \bigcap_{j \neq i} P_j$ and $\bigcap_{i \in I} P_i = E$. Thus, Conditions (4.1b) and (4.1c) of Definition 4.1 hold. Finally, Condition (4.1e) of Definition 4.1 holds by Lemma 13.4. It follows that E is patching data. \qed

14 Cyclic Extensions

Every finite group is generated by cyclic groups whose orders are powers of prime numbers. Given a field K, a variable x, and a power q of a prime number, we construct a Galois extension F of $K(x)$ with $\text{Gal}(F/K(x)) \cong \mathbb{Z}/q\mathbb{Z}$. If in addition K is complete with respect to a non-archimedean norm, we show how to embed F into $K\{x\}$.

Lemma 14.1. Let K be a field, n a positive integer with $\text{char}(K) \nmid n$, and x a variable. Then $K(x)$ has a cyclic extension F of degree n which is contained in $K((x))$.

Proof. Choose a root of unity ζ_n of order n in K_s. Let $L = K(\zeta_n)$ and $G = \text{Gal}(L/K)$. Consider the map $\chi: G \to \{1, \ldots, n-1\}$ such that $\sigma(\zeta_n) = \zeta_n^{\chi(\sigma)}$. Then $\gcd(\chi(\sigma), n) = 1$ and

$$(14.1) \quad \chi(\sigma \tau) \equiv \chi(\sigma)\chi(\tau) \mod n$$

for all $\sigma, \tau \in G$. By [9, Example 3.5.1], $K((x))$ is a regular extension of K and $L((x)) = K((x))(\zeta_n)$. Thus, we may identify G with $\text{Gal}(L((x))/K((x)))$.

Consider the element

$$g(x) = \prod_{\sigma \in G} \left(1 + \sigma(\zeta_n)x\right)^{\chi(\sigma^{-1})}$$

of $L[x]$. Since $\text{char}(K) \nmid n$, Hensel’s lemma [9, Prop. 3.5.2] gives a $z \in L[[x]]$ with $z^n = 1 + \zeta_n x$. Then $y = \prod_{\sigma \in G} \sigma(z)^{\chi(\sigma^{-1})} \in L[[x]]$ and $y^n = \prod_{\sigma \in G} \sigma(z^n)^{\chi(\sigma^{-1})} = \prod_{\sigma \in G} (1 + \sigma(\zeta_n)x)^{\chi(\sigma^{-1})} = g(x)$. Since $\zeta_n \in L$, $F = L(x, y)$ is a cyclic extension.
of degree d of $L(x)$, where $d|n$ and $y^d \in L(x)$ [14, p. 289, Thm. 6.2(ii)]. The linear factors of $g(x)$ are not associate in $K[x]$. In particular, $(1 + x)|g(x)$ and $(1 + x)^2 \not| g(x)$. Hence, by Eisenstein's criterion, $Y^n - g(x)$ is irreducible over $L(x)$. Therefore, $F/L(x)$ is a cyclic extension of degree n. Thus, the Galois group $\text{Gal}(F/L(x))$ is generated by an element ω satisfying $\omega(y) = \zeta_n y$.

By (14.1), there exists for each $\tau, \rho \in G$ a positive integer $k(\tau, \rho)$ and a polynomial $f_\tau(x) \in L[x]$ such that

$$
\tau(y) = \prod_{\sigma \in G} \tau\sigma(z)^{\chi(\sigma^{-1})} = \prod_{\rho \in G} \rho(z)^{\chi(\rho^{-1})} = \prod_{\rho \in G} \rho(z)^{\chi(\rho^{-1})\chi(\tau)+k(\tau, \rho)\chi(\tau)} = y^{\chi(\tau)} \prod_{\rho \in G} (1 + \rho(\zeta_n)x)^{\chi(\tau)k(\tau, \rho)} = y^{\chi(\tau)} f_\tau(x).
$$

It follows that G leaves F invariant. Let E be the fixed field of G in F.

$$
\begin{array}{c c c c c c c c c c c c}
K((x)) & \longrightarrow & L((x)) \\
\downarrow & & \downarrow \\
E & \longrightarrow & F = L(x, y) \\
\downarrow & & \downarrow \\
K(x) & \longrightarrow & L(x) \\
\downarrow & & \downarrow \\
K & \longrightarrow & L = K(\zeta_n)
\end{array}
$$

Denote the subgroup of $\text{Aut}(F/K(x))$ generated by G and $\text{Gal}(F/L(x))$ by H. Then the fixed field of H is $K(x)$, so $F/K(x)$ is a Galois extension with $\text{Gal}(F/K(x)) = G \cdot \text{Gal}(F/L(x))$. Moreover, given $\tau \in G$, put $m = \chi(\tau)$. Then $\tau\omega(y) = \tau(\zeta_n y) = \zeta_n^m y^m f_\tau(x) = \omega(y)^m f_\tau(x) = \omega(y^m f_\tau(x)) = \omega(y)$. Thus, $\tau\omega = \omega\tau$, so G commutes with $\text{Gal}(F/L(x))$. Therefore, $E/K(x)$ is a Galois extension with $\text{Gal}(E/K(x)) \cong \text{Gal}(F/L(x)) \cong \mathbb{Z}/n\mathbb{Z}$. \hfill \square

Lemma 14.2. Let A be a principal ideal domain, $E = \text{Quot}(A)$, F a finite separable extension of E, and B the integral closure of A in F. Suppose B is unramified over A. Then there exists $b \in B$ such that $\text{trace}_{F/E}(b) = 1$.

Proof. We write trace for $\text{trace}_{F/E}$ and notice that the set

$$
B' = \{x \in F \mid \text{trace}(xB) \subseteq A\}
$$

is a fractional ideal of B that contains B [13, p. 58, Cor.]. Hence, $D = (B')^{-1}$ is an ideal of B (called the **different** of B over A). Moreover, a prime ideal P of B is ramified over A if and only if P divides D [13, p. 62, Prop. 8]. Since, by assumption, no P is ramified over A, we have $D = B$, so $B' = B$.

Next observe that since $\text{trace}: F \to E$ is an E-linear map, $\text{trace}(B)$ is an ideal of A, hence there exists $a \in A$ with $\text{trace}(B) = a A$. Since F/E is separable,
Suppose Lemma 14.3. Algebraic Patching 125 has the desired properties.

\[\text{element } a \text{ unramified over } K \]

\[\text{trace}(x) \text{ the map trace: } F \rightarrow E \text{ is nonzero [14, p. 286, Thm. 5.2], so } a \neq 0. \]

Therefore, \(\text{trace}(a^{-1}B) = A \), hence \(a^{-1} \in B' = B \). It follows that \(a^{-1}B = B \), so \(\text{trace}(B) = A \). Consequently, there exists \(b \in B \) with \(\text{trace}(b) = 1 \).

Lemma 14.3. Suppose \(p = \text{char}(K) > 0 \). Let \(F \) be a cyclic extension of \(K(x) \) of degree \(p^n \) in \(K((x)) \), \(n \geq 1 \). Suppose the integral closure \(O \) of \(K[x] \) in \(F \) is unramified over \(K[x] \). Then \(K(x) \) has a cyclic extension \(F' \) of degree \(p^{n+1} \) in \(K((x)) \) which contains \(F \) such that the integral closure \(O' \) of \(K[x] \) in \(F' \) is unramified over \(K[x] \).

Proof. We define \(F' \) to be \(F(z) \), where \(z \) is a zero of \(Z^p - Z - a \) with a suitable element \(a \in O \). The three parts of the proof produce \(a \), and then show that \(F' \) has the desired properties.

- **PART A: Construction of \(a \) and \(z \).** We apply Lemma 14.2 to choose \(b \in O \) with \(\text{trace}_{F/K(x)}(b) = 1 \). Then we set \(c = b - b^p \) and notice that

\[\text{trace}_{F/K(x)}(c) = \text{trace}_{F/K(x)}(b) - (\text{trace}_{F/K(x)}(b))^p = 0. \]

Let \(\sigma \) be a generator of \(\text{Gal}(F/K(x)) \). Set \(q = p^n \) and

\[a_1 = \sum_{i=1}^{q-1} \sum_{j=0}^{i-1} b^{\sigma^i} c^{\sigma^j}. \]

Then \(a_1 \in O \) and

\[a_1^\sigma = \sum_{i=1}^{q-1} \sum_{j=0}^{i-1} b^{\sigma^{i+1}} c^{\sigma^{j+1}} = \sum_{i=2}^{q} \sum_{j=1}^{i-1} b^{\sigma^i} c^{\sigma^j}. \]

Hence,

\[a_1 - a_1^\sigma = b^\sigma c + b^{\sigma^2} c + \cdots + b^{\sigma^q} c - b^{\sigma^q} \sum_{j=1}^{q-1} c^{\sigma^j} \]

\[= \sum_{i=0}^{q-1} b^{\sigma^i} c - b \sum_{j=0}^{q-1} c^{\sigma^j} = \text{trace}_{F/K(x)}(b) c - b \cdot \text{trace}_{F/K(x)}(c) = c. \]

Now note that \(O \) is integral over \(K[x] \) and is contained in \(K((x)) \), so \(O \subseteq K[[x]] \) (because \(K[[x]] \) is integrally closed), in particular \(a_1 \in K[[x]] \). Let \(v \) be the \(K \)-valuation of \(K((x)) \) with \(v(x) = 1 \). Since \(K[x] \) is \(v \)-dense in \(K[[x]] \), there is an \(a_0 \in K[x] \) with \(v(a_1 - a_0) > 0 \). Set \(a = a_1 - a_0 \). Then \(a \in O \), \(v(a) > 0 \), and

\[a^\sigma - a = b^p - b. \]

Thus, the polynomial \(f(Z) = Z^p - Z - a \) satisfies \(v(f(0)) = v(-a) > 0 \) and \(v(f'(0)) = v(-1) = 0 \). By Hensel’s lemma for \(K((x)) \), there exists \(z \in K[[x]] \) such that \(z^p - z - a = 0 \).
• **Part B:** Irreducibility of $Z^p - Z - a$. Assume $Z^p - Z - a$ is reducible over F. Then $z \in F$ [14, p. 290, Thm. 6.4(b)]. By (14.2),

$$
(14.3) \quad (z^\sigma - z)^p - (z^\sigma - z) - (b^p - b) = (z^\sigma - z)^p - (z^\sigma - z) - (a^\sigma - a) = (z^p - z - a)^\sigma - (z^p - z - a) = 0.
$$

Since b is a root of $Z^p - Z - (b^p - b)$, there is an integer i with $z^\sigma - z = b + i$ [14, p. 290, Thm. 6.4(b)]. Apply $\text{trace}_{F/K(x)}$ to both sides to get 0 on the left and 1 on the right. This contradiction proves that $Z^p - Z - a$ is irreducible.

It follows that $f = \text{irr}(z, F) \in O[Z]$, $f(z) = 0$, and $f'(z) = -1$, in particular $\text{disc}(f)$ is a unit of O [9, p. 109]. Hence, $O' = O[z]$ is the integral closure of O in $F' = F(z)$ and O'/O is a ring cover in the sense of [9, Def. 6.1.3]. In particular, no prime ideal of O is ramified in O' [9, Lemma 6.1.8(b)]. It follows from our assumption on O that O' is unramified over $K[x]$.

• **Part C:** Extension of σ to σ' that maps z to $z + b$. Equality (14.2) implies that $z + b$ is a zero of $Z^p - Z - a^\sigma$. Thus, by Part B, σ extends to an automorphism σ' of F' with $z^{\sigma'} = z + b$. We need only to prove that the order of σ' is p^{n+1}. Induction shows $z^{(\sigma')^j} = z + b + b^\sigma + \cdots + b^{\sigma'j-1}$ for each $j \geq 1$. In particular,

$$
z^{(\sigma')^q} = z + \text{trace}_{F/K(x)}(b) = z + 1.
$$

Hence, $z^{(\sigma')^q} = z + i$ for $i = 1, \ldots, p$, so the order of σ' is p^{n+1}. Consequently, F' is a cyclic extension of $K(x)$ of order p^{n+1}.

\[\square \]

We can do even better, if K is a complete field under an absolute value $| |$.

Lemma 14.4. Let K be a complete field under an absolute value $| |$, let x be a variable, and let q be a power of a prime number. Then $K(x)$ has a Galois extension in $K\{x\}$ in $K((x))$ with Galois group $\mathbb{Z}/q\mathbb{Z}$.

Proof. By Lemmas 14.1 and 14.3, $K(x)$ has a Galois extension F in $K((x))$ with Galois group isomorphic to $\mathbb{Z}/q\mathbb{Z}$. We choose a primitive element y for $F/K(x)$ integral over $K[x]$. Then $y \in K[[x]]$, so $y = \sum_{n=0}^{\infty} a_n x^n$ with $a_n \in K$ for each $n \geq 0$. By Proposition 8.5, y converges at some $c \in K^\times$. Thus, the series $\sum_{n=0}^{\infty} a_n c^n$ converges in K, which means that $y' = \sum_{n=0}^{\infty} a_n c^n x^n \in K\{x\}$. Now, the map $x \to cx$ extends to an automorphism ϕ of $K((x))$ that leaves $K(x)$ invariant. It maps $K(x, y)$ onto the subfield $K(x, y')$ of $K\{x\}$. Since $K(x, y)/K$ is Galois with Galois group $\mathbb{Z}/q\mathbb{Z}$, so is the extension $K(x, y')/K$, as desired. \[\square \]
15 Embedding Problems over Complete Fields

Let K/K_0 be a finite Galois extension of fields with Galois group Γ acting on a finite group G. Consider a variable x and set $E_0 = K_0(x)$ and $E = K(x)$. Then E/E_0 is a Galois extension and we identify $\text{Gal}(E/E_0)$ with $\Gamma = \text{Gal}(K/K_0)$ via restriction. We refer to

$$\text{pr}: \Gamma \rtimes G \to \Gamma$$

as a constant finite split embedding problem over E_0. We prove that if K_0 is complete under an ultrametric absolute value, then (15.1) has a solution field (Section 5) equipped with a K-rational place.

Proposition 15.1. Let K_0 be a complete field with respect to an ultrametric absolute value $|\ |$. Let K/K_0 be a finite Galois extension with Galois group Γ acting on a finite group G from the right. Then E has a Galois extension F such that

1. F/E_0 is Galois;
2. there is an isomorphism $\psi: \text{Gal}(F/E_0) \to \Gamma \rtimes G$ such that $\text{pr} \circ \psi = \text{res}_E$; and
3. F has a set of cardinality $|K_0|$ of K-rational places ϕ (so F/K is regular) such that $\phi(x) \in K_0$ and $\bar{F}_\phi = K$.

Proof. Our strategy is to attach patching data E to the embedding problem and to define a proper action of Γ on E. Then we apply Proposition 5.2 to conclude that the compound F of E gives a solution to the embedding problem.

We fix a finite set I on which Γ acts from the right and a system of generators $\{\tau_i \mid i \in I\}$ of G such that for each $i \in I$

1. $\{\gamma \in \Gamma \mid i^\gamma = i\} = \{1\}$;
2. the order of the group $G_i = \langle \tau_i \rangle$ is a power of a prime number;
3. $\tau_i^\gamma = \tau_{i^\gamma}$, for every $\gamma \in \Gamma$; and
4. $|I| \geq 2$.

(E.g. assuming $G \neq 1$, let G_0 be the set of all elements of G whose order is a power of a prime number and note that Γ leaves G_0 invariant. Let $I = G_0 \times \Gamma$ and for each $(\sigma, \gamma) \in I$ and $\gamma' \in \Gamma$ let $(\sigma, \gamma')^{\gamma'} = (\sigma, \gamma' \gamma')$ and $\tau_{(\sigma, \gamma)} = \sigma^\gamma$.)

Then $G_i^\gamma = G_{i^\gamma}$ for each $\gamma \in \Gamma$ and $G = \langle G_i \mid i \in I \rangle$. Choose a system of representatives J for the Γ-orbits of I. Then every $i \in I$ can be uniquely written as $i = j^\gamma$ with $j \in J$ and $\gamma \in \Gamma$.

• **Claim A:** There exists a subset \(\{c_i \mid i \in I\} \subseteq K \) such that \(c_i^1 = c_{i'} \), and \(c_i \neq c_j \) for all distinct \(i, j \in I \) and \(\gamma \in \Gamma \).

Indeed, it suffices to find \(\{c_j \mid j \in J\} \subseteq K \) such that \(c_j^\delta \neq c_j^\varepsilon \) for all \(j \in J \) and all distinct \(\delta, \varepsilon \in \Gamma \), and \(c_j^\delta \neq c_k \) for all distinct \(j, k \in J \) and all \(\delta \in \Gamma \).

Having done that, we can define \(\delta, \varepsilon \) and all distinct \(c \) such that \(c_i^0 \neq c_{i'}^0 \) for all \(i, \Gamma \in \Gamma \) such that \(c_j^\delta \neq c_j^\varepsilon \) for all distinct \(\delta, \varepsilon \in \Gamma \), and \(c_j^\delta \neq c_k \) for all distinct \(j, k \in J \) and all \(\delta \in \Gamma \). Thus it suffices to show that there are infinitely many primitive elements for \(K/K_0 \).

But if \(c \in K^\times \) is primitive, then so is \(c + a \), for each \(a \in K_0 \). Since \(K_0 \) is complete, hence infinite, the claim follows.

• **Construction B:** Patching data.

We choose \(r \in K_0^\times \) such that \(|r| \leq |c_i - c_j| \) for all distinct \(i, j \in I \). For each \(i \in I \) we set \(w_i = \frac{r}{x - c_i} \in K(x) \). As in Section 11, we consider the ring \(R = K\{w_i \mid i \in I\} \) and let \(Q = \text{Quot}(R) \). For each \(i \in I \) let

\[
P_i = P_{i \setminus \{i\}} = \text{Quot}(K\{w_j \mid j \neq i\}), \quad \text{and} \quad P'_i = P_{\{i\}} = \text{Quot}(K\{w_i\})
\]

(we use the notation of Section 12).

Let \(\gamma \in \Gamma \). By our definition, \(w_i^\gamma = \frac{r}{x - c_i^\gamma} = w_i^\gamma, \ i \in I \). Hence, \(\gamma \) leaves \(R_0 = K\{w_i \mid i \in I\} \) invariant. Since \(|a| \) is complete on \(K_0 \), it has a unique extension to \(K \), so \(|a^\gamma| = |a| \) for each \(a \in K \). Moreover, for each \(f = a_0 + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in} w_i^n \in R_0 \), we have

\[
f^\gamma = a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma (w_i^\gamma)^n
\]

and

\[
\|f^\gamma\| = \|a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma (w_i^\gamma)^n\| = \|a_0^\gamma + \sum_{i \in I} \sum_{n=1}^{\infty} a_{in}^\gamma w_i^n\|
\]

\[
= \max(\|a_0\|, \|a_{in}\|)_{i,n} = \max(\|a_0\|, \|a_{in}\|)_{i,n} = \|f\|.
\]

By Lemma 6.5, \(\gamma \) uniquely extends to a continuous automorphism of the completion \(R \) of \(R_0 \), by formula (15.4) for \(f \in R \). Hence, \(\Gamma \) lifts to a group of continuous automorphisms of \(R \). Therefore, \(\Gamma \) extends to a group of automorphisms of \(Q = \text{Quot}(R) \). In addition, \(P_i^\gamma = P_i^\gamma \) and \((P'_i)^\gamma = P_i^\gamma \).

For each \(j \in J \), Lemma 14.4 gives a cyclic extension \(F_j \) of \(E \) in \(P_j' = K\{w_j\} \) with Galois group \(G_j = \langle \tau_j \rangle \).

For an arbitrary \(i \in I \) there exist unique \(j \in J \) and \(\gamma \in \Gamma \) such that \(i = j^\gamma \) (by (15.3a)). Since \(\gamma \) acts on \(Q \) and leaves \(E \) invariant, \(F_i = F_j^\gamma \) is a Galois extension of \(E \).
The isomorphism $\gamma: F_j \to F_i$ gives an isomorphism
\[\text{Gal}(F_j/E) \cong \text{Gal}(F_i/E) \]
that maps each $\tau \in \text{Gal}(F_j/E)$ onto $\gamma^{-1} \circ \tau \circ \gamma \in \text{Gal}(F_i/E)$ (notice that the elements of the Galois groups act from the right). In particular, it maps τ_j onto $\gamma^{-1} \circ \tau_j \circ \gamma$. We can therefore identify G_i with $\text{Gal}(F_i/E)$ such that τ_i coincides with $\gamma^{-1} \circ \tau_j \circ \gamma$. This means that $(a \tau)^\gamma = (a \gamma)^\gamma$ for all $a \in F_j$ and $\tau \in G_j$. In particular, $F_i \subseteq P'_i$ for each $i \in I$. It follows from Proposition 13.5 that $E = (E, F_i, P_i, Q_i; G_i, G_i)_{i \in I}$ is patching data. By construction, Γ acts properly on E (Definition 5.1). By Propositions 4.5 and 5.2, the compound F of E satisfies (15.2a) and (15.2b). Now we verify (15.2c).

- **Claim C:** F/K has many prime divisors of degree 1. Each $b \in K_0$ with
\[|b| > \max_{i \in I}(|r_i|, |c_i|) \]
satisfies $|\frac{x}{b-r_i}| < 1$ for each $i \in I$, hence, the map $x \mapsto b$ extends to a homomorphism from R to K that maps w_i onto $\frac{x}{b-r_i}$. Since R is a principal ideal domain (Proposition 11.8), this homomorphism extends to a K-rational place $\phi_b: Q \to K \cup \{\infty\}$. Thus, $\phi_b|_F$ is a K-rational place of F with $\phi_b(x) = b \in K_0$, so it corresponds to a prime divisor of F/K of degree 1. If $b' \in K_0$ and $b' \neq b$, then $\phi_b \neq \phi_{b'}$, so also the prime divisors that ϕ_b and $\phi_{b'}$ define are distinct. Consequently, the cardinality of the prime divisors of F/K of degree 1 is that of K_0.

Finally, the regularity of F/K follows from the fact that $\phi_b(F) = K \cup \{\infty\}$ [9, Lemma 2.6.9].

\[\square \]

16 Embedding Problems over Ample Fields

In this section K/K_0 is an arbitrary finite Galois extension with Galois group Γ and x is a variable. Suppose Γ acts on a finite group G. We look for a rational solution of the embedding problem
\[\text{pr}: \text{Gal}(K(x)/K_0(x)) \times G \to \text{Gal}(K(x)/K_0(x)) \]
over $K_0(x)$. We call (16.1) a constant split embedding problem. When K_0 is complete under an ultrametric absolute value, this problem reduces to the special case solved in Section 15.

Consider also a regular extension \tilde{K}_0 of K_0 such that x is transcendental over \tilde{K}_0 and let $\tilde{K} = \tilde{K}\tilde{K}_0$. Then $\tilde{K}_0(x)$ is a regular extension of $K_0(x)$ [9,
Lemma 16.1. In the above notation suppose a finite split embedding problem over \(\hat{K}_0(x) \) is linearly disjoint from \(K(x) \) over \(K_0(x) \). Hence, \(\text{res}: \text{Gal}(\hat{K}(x)/\hat{K}_0(x)) \to \text{Gal}(K(x)/K_0(x)) \) is an isomorphism. This gives rise to a finite split embedding problem over \(K_0(x) \),

\[
(16.2) \quad \text{pr}: \text{Gal}(\hat{K}(x)/\hat{K}_0(x)) \times G \to \text{Gal}(\hat{K}(x)/\hat{K}_0(x))
\]
such that \(\text{pr} \circ (\text{res}_{K(x)} \times \text{id}_G) = \text{res}_{K(x)} \circ \text{pr} \).

We identify each of the groups \(\text{Gal}(\hat{K}(x)/\hat{K}_0(x)) \), \(\text{Gal}(K(x)/K_0(x)) \), and \(\text{Gal}(\hat{K}/\hat{K}_0) \) with \(\Gamma = \text{Gal}(K/K_0) \) via restriction. Moreover, if \(F \) (resp. \(\hat{F} \)) is a solution field of embedding problem \((16.1)\) (resp. \((16.2)\)), then we identify \(\text{Gal}(F/K_0(x)) \) (resp. \(\text{Gal}(\hat{F}/\hat{K}_0(x)) \)) with \(\Gamma \ltimes G \) via an isomorphism \(\theta \) (resp. \(\hat{\theta} \)) satisfying \(\text{pr} \circ \theta = \text{res} \) (resp. \(\text{pr} \circ \hat{\theta} = \text{res} \)). We say that \((F,\theta)\) is a split rational solution of \((16.1)\) if \(F \) has a \(K \)-rational place \(\phi \) such that \(\Gamma \) is the decomposition group

\[
D_\phi = \{ \sigma \in \text{Gal}(F/K_0(x)) \mid \sigma x = x \text{ for all } x \in F \text{ with } \phi(x) \neq \infty \}
\]
of \(\phi \) over \(K_0(x) \). We say that \((F,\theta)\) is unramified if \(\phi \) can be chosen to be unramified over \(K_0(x) \).

Lemma 16.1. In the above notation suppose \(K_0 \) is ample and existentially closed in \(\hat{K}_0 \). Let \(\hat{F} \) be a solution field to embedding problem \((16.2)\) with a \(\hat{K} \)-rational place \(\hat{\phi} \), unramified over \(\hat{K}_0(x) \), such that \(\hat{\phi}(x) \in \hat{K}_0 \). Then embedding problem \((16.1)\) has a solution field \(F \) with a \(K \)-rational place \(\phi \) unramified over \(K_0(x) \) such that \(\phi(x) \in K_0 \).

Proof. We break up the proof into several parts. First we solve embedding problem \((16.1)\) over \(\hat{K}_0(x) \), then we push the solution down to a solution over a function field \(K_0(u,x) \) which is regular over \(K_0 \), and finally we specialize the latter solution to a solution over \(K_0(x) \) with a place satisfying all of the prescribed conditions.

- **Part A:** A solution of \((16.1)\) over \(\hat{K}_0(x) \). By assumption, there exists an isomorphism

\[
\hat{\theta}: \text{Gal}(\hat{F}/\hat{K}_0(x)) \to \text{Gal}(\hat{K}(x)/\hat{K}_0(x)) \ltimes G
\]
such that \(\text{pr} \circ \hat{\theta} = \text{res}_{\hat{K}_0(x)} \). Let \(\hat{F}_0 \) be the fixed field in \(\hat{F} \) of \(D_{\hat{\phi}} (= \Gamma) \). Then, \(\hat{F}_0 \cap \hat{K}(x) = \hat{K}_0(x) \) and \(\hat{F}_0 \cdot \hat{K}(x) = \hat{F} \), so \([\hat{F}_0 : \hat{K}_0(x)] = [\hat{F} : \hat{K}(x)]\). Then, \(\hat{\phi}(\hat{F}_0) = \hat{K}_0 \cup \{ \infty \} \). Hence, \(\hat{F}_0/\hat{K}_0 \) is regular \([9, \text{Lemma } 2.6.9(b)]\).

We choose a primitive element \(y \) for the extension \(\hat{F}_0/\hat{K}_0(x) \) integral over \(\hat{K}_0[x] \). By the preceding paragraph, \(\hat{F} = \hat{K}(x,y) \).

By \([12, \text{Lemma } 5.1.2]\), there exists an absolutely irreducible polynomial \(h \in \hat{K}_0[V,W] \) and elements \(v, w \in \hat{F}_0 \) such that \(\hat{K}_0(v,w) = \hat{F}_0 \), \(h(v,w) = 0 \), \(h(0,0) = 0 \), and \(\frac{\partial h}{\partial W}(0,0) \neq 0 \).
We also choose a primitive element c for K over K_0, a primitive element z for \hat{F} over $\hat{K}_0(x)$ integral over $\hat{K}_0[x]$, and note that $\hat{F} = K_0(c, x, y)$. Then there exist polynomials $f, p_0, p_1 \in \hat{K}_0[x, z]$, $g, r_0, r_1, r_2 \in \hat{K}_0[x, y]$, $q_0, q_1 \in \hat{K}_0[T, X, Y]$, and $s_0, s_1, s_2 \in \hat{K}_0[V, W]$ such that the following conditions hold:

(16.3a) $\hat{F} = K_0(x, z)$ and $f(x, Z) = \text{irr}(z, \hat{K}_0(x))$; in particular $\text{discr}(f(x, Z)) \in \hat{K}_0(x)^\times$.

(16.3b) $g(x, Y) = \text{irr}(y, \hat{K}_0(x)) = \text{irr}(y, \hat{K}(x))$; since \hat{F}_0/\hat{K}_0 is regular (by the first paragraph of Part A), $g(X, Y)$ is absolutely irreducible [9, Cor. 10.2.2(b)].

(16.3c) $y = p_1(x, z)/p_0(x, z)$; $z = q_1(c, x, y)/q_0(c, x, y)$, $p_0(x, z) \neq 0$, and $q_0(c, x, y) \neq 0$.

(16.3d) $v = r_1(x, y)/r_0(x, y)$, $w = r_2(x, y)/r_0(x, y)$, $x = s_1(v, w)/s_0(v, w)$, $y = s_2(v, w)/s_0(v, w)$, $r_0(x, y) \neq 0$, and $s_0(v, w) \neq 0$.

- **PART B: Pushing down.** The polynomials introduced in Part A depend on only finitely many parameters from \hat{K}_0. Thus, there are $u_1, \ldots, u_n \in \hat{K}_0$ with the following properties:

(16.4a) The coefficients of $f, g, h, p_0, p_1, q_0, q_1, r_0, r_1, r_2, s_0, s_1, s_2$ are in $\hat{K}_0[u]$.

(16.4b) $F_u = K_0(u, x, z)$ is a Galois extension of $K_0(u, x)$, $f(x, Z) = \text{irr}(z, K_0(u, x))$, and $\text{discr}(f(x, Z)) \in K_0(u, x)^\times$.

(16.4c) $g(x, Y) = \text{irr}(y, K_0(u, x)) = \text{irr}(y, K(u, x))$; we set $F_{0, u} = K_0(u, x, y)$.

It follows that restriction maps the groups $\text{Gal}(\hat{F}/\hat{K}_0(x))$, $\text{Gal}(\hat{F}/\hat{F}_0)$, and $\text{Gal}(\hat{F}/\hat{K}(x))$ isomorphically onto $\text{Gal}(F_u/K_0(u, x))$, $\text{Gal}(F_u/F_{0, u})$, and $\text{Gal}(F_u/K(u, x))$, respectively. Therefore, restriction transfers $\hat{\theta}$ to an isomorphism

$$\theta: \text{Gal}(F_u/K_0(u, x)) \rightarrow \text{Gal}(K(u, x)/K_0(u, x)) \rtimes G$$

satisfying $\text{pr} \circ \theta = \text{res}_{F_u/K(u, x)}$.

PART C: Specialization. Since K_0 is existentially closed in \hat{K}_0, the field \hat{K}_0 and therefore also $K_0(u)$ are regular extensions of K_0 (Lemma 1.5). Thus, u generates an absolutely irreducible variety $U = \text{Spec}(K_0[u])$ over K_0 [9, Cor. 10.2.2]. The variety U has a nonempty Zariski-open subset U' that contains u such that for each $u' \in U'$ the K_0-specialization $u \rightarrow u'$ extends to a $K(x)$-homomorphism $': K(x)[u, v, w, y, z] \rightarrow K(x)[u', v', w', y', z']$ such that the following conditions, derived from (16.3a–d) and (16.4a–c), hold:
Choosing Part D: Noether theorem [9, Prop. 9.4.3].

(16.6a) The coefficients of $f', g', h', p_0', p_1', q_0', q_1', r_0', r_1', r_2', s_0', s_1', s_2'$ belong to $K_0[u']$.

(16.6b) $F = K_0(u', x, z')$ is a Galois extension of $K_0(u', x)$, $f'(x, z') = 0$, and $\text{discr}(f'(x, Z)) \in K_0(u', x)\times$.

(16.6c) $y' = \frac{p_1'(x,z')}{p_0'(x,z')}$, $z' = \frac{q_1'(c,x,y')}{q_0'(c,x,y')}$, $p_0'(x, z') \neq 0$, and $q_0'(c, x, y') \neq 0$; we set $F_0 = K_0(u', x, y')$ and find that $F = F_0K$.

(16.6d) $g'(X, Y)$ is absolutely irreducible, $\text{deg}_Y(g'(x, Y)) = \text{deg}_Y(g(x, Y))$, $g'(x, y') = 0$, and so $g'(x, Y) = \text{irr}(y', K_0(x')) = \text{irr}(y', K(u', x'))$.

(16.6e) $h'(V, W)$ is absolutely irreducible, $h'(0, 0) = 0$, and $\frac{\partial h'}{\partial Y}(0, 0) \neq 0$.

(16.6f) $v' = \frac{r_1'(x,y')}{r_0'(x,y')}$, $w' = \frac{r_2'(x,y')}{r_0'(x,y')}$, $x = \frac{s_1'(v',w')}{s_0'(v',w')}$, $y' = \frac{s_2'(v',w')}{s_0'(v',w')}$, $r_0'(x, y') \neq 0$, and $s_0'(v', w') \neq 0$; thus $F_0 = K_0(u', v', w')$.

To achieve the absolute irreducibility of g' and h' we have used the Bertini-Noether theorem [9, Prop. 9.4.3].

- Part D: Choosing $u' \in K_0^n$. Since K_0 is existentially closed in K_0 and since $u \in U'(K_0)$, we can choose $u' \in U'(K_0)$. Then $K_0[u'] = K_0$, $K_0(u', x) = K_0(x)$, $F_0 = K_0(x, y') = K_0(v', w')$, and $F = K_0(x, z')$.

Since $\text{discr}(f'(x, Z)) \neq 0$ (by (16.6b)) the homomorphism $'$ induces an embedding

\[(16.7) \quad \psi^*: \text{Gal}(F/K_0(x)) \to \text{Gal}(F_u/K_0(u, x))\]

such that $(\psi^*(\sigma)(s))' = \sigma(s')$ for all $\sigma \in \text{Gal}(F/K_0(x))$ and $s \in F_u$ with $s' \in F$ [14, p. 344, Prop. 2.8]. Each $s \in K(x)$ is fixed by $'$, hence $\psi^*(\sigma)(s) = \sigma(s)$ for each $\sigma \in \text{Gal}(F/K_0(x))$. It follows that ψ^* commutes with restriction to $K(x)$.
By (16.6c), \(F = K(x, y') = F_0K \). By (16.6d) and [9, Cor. 10.2.2(b)], \(F_0/K_0 \) is a regular extension, so \(F_0 \) is linearly disjoint from \(K \) over \(K_0 \). Therefore, \(F_0 \) is linearly disjoint from \(K(x) \) over \(K_0(x) \), hence \(F_0 \cap K(x) = K_0(x) \) and \([F_0 : K_0(x)] = [F : K(x)] \). It follows from (16.6d) that

\[
|\text{Gal}(F/K_0(x))| = [F : K_0(x)]
= [F : K(x)][K(x) : K_0(x)]
= \deg_{Y} g'(x, Y)[K : K_0]
= \deg_{Y} g(x, Y)[K : K_0]
= [F_u : K(u, x)][K(u, x) : K_0(u, x)]
= [F_u : K_0(u, x)] = |\text{Gal}(F_u/K_0(u, x))|.
\]

Therefore \(\psi^* \) is an isomorphism. Let

\[
\rho: \text{Gal}(K(u, x)/K_0(u, x)) \times G \to \text{Gal}(K(x)/K_0(x)) \times G
\]

be the isomorphism whose restriction to \(\text{Gal}(K(u, x)/K_0(u, x)) \) is the restriction map and to \(G \) is the identity map. Then, \(\theta' = \rho \circ \theta \circ \psi^* \) satisfies \(\text{pr} \circ \theta' = \text{res}_{F/K(x)} \) (by (16.5)). This means that \(\theta' \) is a solution of embedding problem (16.1).

Part E: Rational place. Finally, by (16.6e) and (16.6f), the curve defined by \(h'(X, Y) = 0 \) is a model of \(F_0/K_0 \) and \((0, 0)\) is a \(K_0 \)-rational simple point of it. Therefore, by [12, Lemma 5.1.4(b)], \(F_0 \) has a \(K_0 \)-rational place \(\phi_0 : F_0 \to K_0 \cup \{\infty\} \). Since \(K_0 \) is ample, \(F_0 \) has infinitely many \(K_0 \)-places.
(Lemma 1.1). Only finitely many of them are ramified over $K_0(x)$. Hence, we may choose ϕ_0 to be unramified over $K_0(x)$. Using the linear disjointness of F_0 and K over K_0, we extend ϕ_0 to a K-rational place $\phi: F \to K \cup \{\infty\}$ unramified over $K_0(x)$.

\[\square\]

Theorem 16.2. Let K_0 be an ample field. Then every constant finite split embedding problem over $K_0(x)$ has a split unramified rational solution.

Proof. Consider a constant finite split embedding problem (16.1) over $K_0(x)$. Let $\hat{K}_0 = K_0((t))$. Then \hat{K}_0 is complete under a nontrivial discrete ultrametric absolute value with prime element t. Consequently, by Proposition 15.1, (16.2) has a split unramified rational solution. By Lemma 1.1(f), K_0 is existentially closed in \hat{K}_0. Hence, by Lemma 16.1, (16.1) has a split unramified rational solution. \[\square\]

17 PAC Hilbertian Fields are ω-Free

The statement of the title was a major open problem of Field Arithmetic. Theorem 17.3 settles that problem.

Recall that the **rank** of a profinite group G is the least cardinality of a system of generators of G that converges to 1. If G is not finitely generated, then $\text{rank}(G)$ is also the cardinality of the set of all open normal subgroups of G [9, Prop. 17.1.2].

We denote the free profinite group of rank m by \hat{F}_m.

An embedding problem for a profinite group G is a pair

\[(\phi: G \to A, \alpha: B \to A),\]

of homomorphisms of profinite groups with ϕ and α surjective. The embedding problem is said to be **finite** if B is finite. If there exists a homomorphism $\alpha': A \to B$ such that $\alpha \circ \alpha' = \text{id}_A$, we say that (17.1) **splits**. A weak solution to (17.1) is a homomorphism $\gamma: G \to B$ such that $\alpha \circ \gamma = \phi$. If γ is surjective, we say that γ is a solution to (17.1). We say that G is **projective** if every finite embedding problem for G has a weak solution.

An embedding problem over a field K is an embedding problem (17.1), where $G = \text{Gal}(K)$. If L is the fixed field of $\text{Ker}(\phi)$, we may identify A with $\text{Gal}(L/K)$ and ϕ with $\text{res}_{K_0/L}$ and then consider $\alpha: B \to \text{Gal}(L/K)$ as the given embedding problem. This shows that our present definition generalizes the one given in Section 5. Note that if $\gamma: \text{Gal}(K) \to B$ is a solution of (17.1) and F is the fixed field in K_0 of $\text{Ker}(\gamma)$, then F is a solution field of the embedding problem $\alpha: B \to \text{Gal}(L/K)$ and γ induces an isomorphism $\bar{\gamma}: \text{Gal}(F/K) \to B$ such that $\alpha \circ \bar{\gamma} = \text{res}_{F/L}$.

The first statement of the following proposition is due to Gruenberg [9, Lemma 22.3.2], the second one is a result of Iwasawa [9, Cor. 24.8.2].
Proposition 17.1. Let G be a projective group. If each finite split embedding problem for G is solvable, then every finite embedding problem for G is solvable. If in addition $\text{rank}(G) \leq \aleph_0$, then $G \cong \hat{F}_\omega$.

We say that a field K is ω-free if every finite embedding problem over K (that is, finite embedding problem for $\text{Gal}(K)$) is solvable.

Theorem 17.2. Let K be an ample field.

(a) If K is Hilbertian, then each finite split embedding problem over K is solvable.

(b) If in addition, $\text{Gal}(K)$ is projective, then K is ω-free.

(c) If in addition, $\text{Gal}(K)$ has countably many generators, and in particular, if K is countable, then $\text{Gal}(K) \cong \hat{F}_\omega$.

Proof.

- **Proof of (a):** Every finite split embedding problem over K gives a finite split constant embedding problem over $K(x)$. The latter is solvable by Theorem 16.2. Now use the Hilbertianity and specialize to get a solution of the original embedding problem over K [9, Lemma 13.1.1].

- **Proof of (b):** By (a), every finite split embedding problem over K is solvable. Hence, by Proposition 17.1, every finite embedding problem over K is solvable.

- **Proof of (c)** Use (b) and Proposition 17.1.

The following special case of Theorem 17.2 is a solution of [8, Prob. 24.41].

Theorem 17.3. Let K be a PAC field. Then K is ω-free if and only if K is Hilbertian.

Proof. That ‘K is ω-free’ implies ‘K is Hilbertian’ is a result of Roquette [9, Cor. 27.3.3]. Conversely, if K is PAC, then $\text{Gal}(K)$ is projective [9, Thm. 11.6.2]. By Example (a) of Section 2, K is ample. Hence, if K is Hilbertian, then by Theorem 17.2(b), K is ω-free.
References

Moshe Jarden
School of Mathematics
Tel-Aviv University
Ramat Aviv, Tel Aviv 69978
Israel
jarden@post.tau.ac.il